
Degree Project in Computer Science and Engineering

Second cycle, 30 credits

Designing a Pipeline for Creating
and Evaluating Swedish Instruction
Datasets for Large Language Models

TIM OLSÉN

Designing a Pipeline for Creating
and Evaluating Swedish Instruction
Datasets for Large Language
Models

TIM OLSÉN

Degree Programme in Computer Science and Engineering
Date: September 5, 2024

Supervisors: Olov Engwall, Ariel Ekgren
Examiner: Joakim Gustafsson

Host company: AI Sweden
Swedish title: Formulering av en pipeline för att skapa och utvärdera svensk
instruktionsdata för stora språkmodeller

© 2024 Tim Olsén

Abstract | i

Abstract
GPT-models have shown remarkable capabilities in natural language gener-
ation (NLG) tasks. Despite the advanced multilingual capabilities of chat
assistants such as ChatGPT, these models can often exhibit an underlying
American bias. This research is motivated by the need to enhance linguistic
and cultural representativity in the Swedish language by exploring a pipeline
for creating and evaluating Swedish instruction datasets.

The pipeline developed in this thesis incorporates multiple stages,
including data collection, curation, fine-tuning, and evaluation. Data
collection involves translating existing instruction datasets from English to
Swedish, generating synthetic data that is culturally relevant, and sourcing
original Swedish content. The curation process emphasizes automatic
annotation and cleaning using advanced tools, ensuring high-quality, diverse
datasets. Fine-tuning is performed using the GPT-SW3 base model, a
Nordic-centric LLM developed by AI Sweden. This model is fine-tuned
with the collected datasets using instruction tuning to create a chat assistant.
This is further extended by briefly exploring Direct Preference Optimization
(DPO), an emerging technique for aligning models with human preferences
without the need for reinforcement learning. The evaluation phase leverages
benchmarks such as ScandEval to assess the performance of the fine-tuned
models, as well as utilizing tasks from the Swedish SAT.

The results of this study have demonstrated a somewhat increased ability in
Swedish language tasks, such as identifying toxic content, question/answering,
and reasoning. While the pipeline has demonstrated potential for improving
the language capability of Swedish LLMs, future work should focus on more
diverse methods for gathering Swedish data, as well as more robust evaluation
pipelines.

Keywords
Swedish Instruction Data, Model Fine-Tuning, Instruction Fine-Tuning, GPT,
Large Language Model, Natural Language Processing, Artificial Intelligence

ii | Abstract

Sammanfattning | iii

Sammanfattning
GPT-modeller har demonstrerat enorma förmågor i att generera naturligt
språk. Trots att chattassistenter som ChatGPT besitter en avancerad flerspråkig
förmåga, kan dessa modeller ofta uppvisa en underliggande amerikansk
partiskhet. Denna forskning motiveras av behovet av att förbättra den språkliga
och kulturella representativiteten i det svenska språket genom att utforska en
pipeline för att skapa och utvärdera svenska instruktionsdataset.

Den pipeline som har utvecklats i denna avhandling innehåller flera
steg, inklusive datainsamling, datakurering, finjustering och utvärdering.
Datainsamlingen omfattar översättning av befintliga instruktionsdataset från
engelska till svenska, generering av syntetiska data som är kulturellt relevanta
samt anskaffning av svenskt originalinnehåll. I kureringsprocessen betonas
automatisk annotering och städning med hjälp av avancerade verktyg, vilket
säkerställer högkvalitativa och mångsidiga dataset. Finjusteringen utförs med
hjälp av basmodellen GPT-SW3, en nordisk-centrerad LLM som utvecklats
av AI Sweden. Denna modell finjusteras med de insamlade dataseten med
hjälp av instruktionsfinjustering för att skapa en chattassistent. Detta utökas
ytterligare genom att kort utforska Direct Preference Optimization (DPO), en
framväxande teknik för att anpassa modeller till mänskliga preferenser utan
behov av Reinforcement Learning. Utvärderingsfasen utnyttjar benchmarks
som ScandEval för att bedöma prestandan hos de finjusterade modellerna,
samt använder uppgifter från svenska högskoleprovet.

Resultaten av denna studie har visat en något ökad förmåga i svensksprå-
kiga uppgifter, såsom identifiering av diskriminerande innehåll, frågor/svar
och resonemang. Även om pipelinen har visat potential för att förbättra
språkförmågan hos svenska LLM:er, bör framtida arbete fokusera på
mer varierande metoder för att samla in svensk data, samt mer robusta
utvärderings-pipelines.

Nyckelord
Svensk Instruktionsdata, Modellfinjustering, Instruktionsfinjustering, GPT,
Stor Språkmodell, Naturlig Språkbehandling, Artificiell Intelligens

iv | Sammanfattning

Acknowledgements | v

Acknowledgements
It has been a great privilege to write this thesis in such an exciting and rapidly
evolving field. For this, I extend my gratitude to AI Sweden for providing
this opportunity. Specifically, I would like to thank my supervisor at AI
Sweden, Ariel Ekgren, for providing great support throughout the entirety of
the project. Moreover, I would like to thank the entire NLU team at AI Sweden
for making me feel welcome in their office and offering me their expertise and
valuable insights. Finally, I would like to thank my supervisor at KTH, Olov
Engwall, for his feedback and help in finalizing the report.

Stockholm, September 2024
Tim Olsén

vi | Acknowledgements

Contents | vii

Contents

1 Introduction 1
1.1 Background . 1
1.2 Problem . 2
1.3 Research Questions . 3
1.4 Purpose . 3
1.5 Goals . 3
1.6 Research Methodology . 4
1.7 Delimitations . 5
1.8 Structure of the thesis . 5

2 Background 6
2.1 Large Language Models . 7

2.1.1 Deep Learning in NLP 7
2.1.1.1 Training a Neural Network 8
2.1.1.2 Model Fine-Tuning 8

2.1.2 Tokenization . 9
2.1.3 Word Embeddings 9
2.1.4 Transformer . 9

2.2 Generative Pre-Trained Transformer 11
2.2.1 GPT-SW3 . 12

2.3 Instruction Tuning . 13
2.3.1 Direct Preference Optimization 14
2.3.2 Chat Template . 16

2.4 Parameter-Efficient Fine-Tuning 16
2.4.1 Low-Rank Adaptation 17
2.4.2 Quantized Low-Rank Adaptation 18

2.5 Evaluating & Benchmarking Language Models 18
2.5.1 Evaluation Metrics 19

2.6 Related Work . 21

viii | Contents

3 Methods 22
3.1 Pipeline Design . 22
3.2 Data Scope . 24
3.3 Data Collection . 24

3.3.1 Translating Data . 24
3.3.2 Synthetic Data . 25
3.3.3 Original Swedish Data 26

3.4 Data Curation . 26
3.4.1 Data Annotation & Cleaning 26

3.5 Data Visualization . 29
3.5.1 Clusters . 30
3.5.2 Bunkatopics . 30

3.6 Fine-tuning Setup . 32
3.6.1 Pre-trained Model Selection 32
3.6.2 Chat Template . 32
3.6.3 Training Configuration 33

3.6.3.1 Instruction Tuning 33
3.6.3.2 Direct Preference Optimization 34

3.7 Evaluation . 34
3.7.1 ScandEval . 34
3.7.2 BiaSWE . 36
3.7.3 SweSAT (Högskoleprovet) 36

4 Results and Analysis 38
4.1 Dataset Summary . 38

4.1.1 Dataset Combinations for Training 39
4.2 Experiment Summary . 40

4.2.1 Instruction Tuning Experiments 40
4.2.2 DPO Experiments 41

4.3 Evaluation . 42
4.3.1 ScandEval . 42
4.3.2 BiaSWE . 50
4.3.3 SweSAT . 51

4.3.3.1 Word Comprehension (ORD) 51
4.3.3.2 Reading Comprehension (LÄS) 52
4.3.3.3 Sentence Completion (MEK) 53

Contents | ix

5 Discussion 55
5.1 Benchmark Summary . 55
5.2 Assessing the Pipeline . 57

5.2.1 Instruction Data . 57
5.2.2 Preference Data . 58

6 Conclusions and Future work 61
6.1 Conclusions . 61
6.2 Limitations . 62
6.3 Ethics . 63
6.4 Sustainability . 63
6.5 Future work . 64

References 65

A Supporting materials 71
A.1 Synthetic Data Generation 71
A.2 Dataset Breakdown . 72

x | Contents

List of Figures | xi

List of Figures

2.1 An example of a Feed Forward Neural Network. 8
2.2 Illustration of the Transformer model, as presented by

Vaswani et al. [14], with the Encoder network (left) and
Decoder network (right). 10

2.3 Illustration of Scaled Dot-Product Attention (left) and Multi-
Head Attention (right) [14]. The left-hand side shows how the
attention weights are computed, as demonstrated in Equation
2.1. The right hand side illustrates how this process is repeated
h times to produce the Multi-Head attention, with different
learned queries, values, and keys; enabling the model to attend
to different aspects of the input sequence. 11

2.4 The GPT-3 architecture, consisting of 96 decoder blocks,
each with 96 masked attention-heads [1]. While similar to
the Transformer’s decoder block in Figure 2.2, the notable
differences are the lack of input from the encoder stage, and
that the GPT outputs the token with the highest probability
to use in the next sequence, rather than outputting the actual
probability distributions. 12

2.5 Reinforcement Learning from Human Feedback pipeline,
where Instruction Tuning is depicted within the first step,
followed by training a Reward Model and performing
Proximal Policy Optimization [2]. 14

xii | List of Figures

2.6 Training objective in RLHF (left) vs. DPO (right) [17]. The
RLHF illustration shows how the reward model is trained
and the policy iteratively refined based on human feedback.
The DPO illustration demonstrates how it aims to achieve the
same alignment more directly through maximum likelihood
estimation applied directly to the final model, without the need
for a separate reward model or reinforcement learning phase.
Figure reproduced under the Creative Commons Attribution
(CC BY 4.0) license. 16

2.7 JSON file demonstrating conversation turns in ChatML format. 16
2.8 Illustration of weight updates during fine-tuning with Low-

Rank Adaptation [18]. Unlike standard weight updating where
the entire weight matrix is adjusted, Low-Rank Adaptation
(LoRA) introduces a low-rank decomposition by updating
only a small, low-rank matrix ∆W (right), which is added to
the pre-trained weights W (left). 17

2.9 Proposed taxonomy, by Guo et al, for evaluating large
language models, presented with major categories and sub-
categories [20]. The three major groups proposed for
evaluating Large Language Models (LLMs) are knowledge
and capability, alignment evaluation, and safety. Figure
reprinted with permission. 19

3.1 High-Level Overview of the pipeline. 22
3.2 Detailed outline of the pipeline. The colors denote the stages

described in the high-level overview in Figure 3.1. 23
3.3 Flow chart representing the annotation process. The color

coding represents the different types of data sources. 27
3.4 Examples of searches with Lilac that allow automatic annotation. 29
3.5 Example of two categories identified with Lilac Clusters. . . . 30
3.6 A synthetically generated dataset, visualized using BunkaTopics. 31
3.7 Example of applied Chat Template with BOS-token and EOS-

token. 33
3.8 Prompt demonstration for BiaSWE evaluation. 36

4.1 Comparison between the baseline models and the experiment
models on text classification tasks (few-shot). The evaluation
was done by calculating the Matthews Correlation Coefficient,
normalized to fit the 0-100 scale. 43

List of Figures | xiii

4.2 Comparison between the baseline models and the experiment
models on information extraction tasks (few-shot). The
evaluation was done by calculating the Micro Averaged F1-
score. 44

4.3 Comparison between the baseline models and the experiment
models on grammar tasks (few-shot). The evaluation was
done by calculating the Matthews Correlation Coefficient,
normalized to fit the 0-100 scale. 45

4.4 Comparison between the baseline models and the experiment
models on question answering tasks (few-shot). The
evaluation was done by calculating the proportion of exact
matches. 46

4.5 Comparison between the baseline models and the experiment
models on summarization tasks (few-shot). The evaluation
was done by calculating the BERTScore. 47

4.6 Comparison between the baseline models and the experiment
models on knowledge tasks (few-shot). The evaluation was
done by calculating the Matthews Correlation Coefficient,
normalized to fit the 0-100 scale. 48

4.7 Comparison between the baseline models and the experiment
models on reasoning tasks (few-shot). The evaluation was
done by calculating the Matthews Correlation Coefficient,
normalized to fit the 0-100 scale. 50

4.8 Comparison of the model’s capabilities of identifying Hate
Speech and Misogyny (F1-score). Best and worst models are
indicated for both hate speech and misogyny. 51

4.9 Comparison of model performance on Word Comprehension,
showing accuracy scores (scale 0-1) along with standard
deviations outlined as error bars. Best and worst model is
indicated for both 0-shot and 5-shot evaluation. 52

4.10 Comparison of model performance on Reading Comprehen-
sion, with 5-shot prompts, showing accuracy scores (scale 0-
1) along with standard deviations outlined as error bars. 53

4.11 Comparison of model performance on Sentence Completion,
showing accuracy scores (scale 0-1) along with standard
deviations outlined as error bars. 54

xiv | List of Figures

A.1 One example of how prompting was done with ChatGPT-4
to generate 20 examples regarding pronunciation of Swedish
words. 71

A.2 One of 20 examples generated from the prompt given in Figure
A.1. 72

List of Tables | xv

List of Tables

3.1 Example of Instruction Tasks from the Dolly annotator
guidelines. 24

4.1 Overview of datasets used in the study 39
4.2 The main datasets used for training. 40
4.3 Overview of the instruction tuning experiments performed.

The loss refers to the final evaluation loss. Batch Size refers
to gradient accumulation steps + device batch size. 41

4.4 Overview of the two DPO experiments performed. Acc. refers
to the final evaluation accuracies, meaning the model’s ability
to identify the preferred response over the rejected one during
evaluation. Both experiments, as well as the base models, did
not utilize system prompts. 42

xvi | List of Tables

List of acronyms and abbreviations | xvii

List of acronyms and abbreviations

ANN Artificial Neural Network

DPO Direct Preference Optimization

FNN Feed Forward Neural Network

GPT Generative Pre-Trained Transformer
GPT-3 Generative Pre-Trained Transformer 3

LLM Large Language Model
LoRA Low-Rank Adaptation

NLG Natural Language Generation
NLP Natural Language Processing

PEFT Parameter-Efficient Fine-Tuning
PPO Proximal Policy Optimization

QLoRA Quantized Low-Rank Adaptation

RLHF Reinforcement Learning from Human Feedback
RNN Recurrent Neural Network

xviii | List of acronyms and abbreviations

Introduction | 1

Chapter 1

Introduction

1.1 Background
In the field of artificial intelligence, Large Language Models (LLMs) have in
recent times gained widespread popularity due to their capability of generating
consistent and relevant textual content with great accuracy. Essentially, these
models are probability distributions that predict the likelihood of a sequence of
words, which they can do due to the large amount of text data they are trained
on. However, the predictive capabilities are not merely due to having seen lots
of text and piecing it together; it also involves underlying architectures that
understand context, nuance, and other subtle details of human language. One
such Language Model is the Generative Pre-Trained Transformer 3 (GPT-3),
presented in the paper Language Models are Few-Shot Learners by OpenAI
[1]. With its large amount of parameters, it demonstrated the few-shot learning
abilities of language models, meaning it could perform well on specific tasks
given only a few examples. This was unlike traditional models, which would
require extensive fine-tuning with a large amount of task-specific data.

While pre-trained models, such as the Generative Pre-Trained Transformer
(GPT), have shown that increasing the number of underlying parameters leads
them to perform better when predicting sequences of words, it does not
necessarily mean that they become better at following user intent. They are
still fully capable of generating untruthful, unhelpful, or toxic content. This
led to OpenAI developing InstructGPT [2], a fine-tuned variant of GPT-3
meant to follow user prompts more aligned with human expectations on a
wide variety of tasks. This was done by incorporating a method they called
Reinforcement Learning from Human Feedback (RLHF), which involved

2 | Introduction

fine-tuning the model, using supervised learning, on prompts along with
desired output behavior; also known as instruction datasets. The model
would then be further fine-tuned using reinforcement learning, where human
trainers provided feedback on the generated outputs. This method proved
efficient as InstructGPT could generate more desirable outputs with 1.3 billion
parameters, than GPT-3 with its 175 billion parameters. This eventually led to
the release of the commercial product ChatGPT, where the model acts as an
assistant that a user can chat with, providing answers on various topics.

1.2 Problem
Advancements in model responsiveness and ethical alignment, as illustrated
by instruction tuned LLMs such as InstructGPT, highlight the importance of
datasets of high quality. It has been shown that this fine-tuning approach
leads to improved capabilities in zero-shot learning settings [3], allowing the
model to generalize more effectively on unseen data. However, the majority of
progress in language model training is centered around content in the English
language. While state-of-the-art models, like ChatGPT, boast impressive
multilingual capabilities due to the large and diverse amount of pre-training
data, it has shown less optimal performance in zero-shot learning settings in
languages other than English [4]. Further, it has been suggested that non-
English prompts can unintentionally bypass safety mechanisms, and generate
harmful content [5].
Addressing the challenges posed by the dominance of English in LLMs, AI
Sweden released a pre-trained LLM for the Nordic languages, called GPT-
SW3. It was trained on a large dataset consisting of the major North Germanic
Languages, namely Danish, Icelandic, Norwegian, and Swedish; as well as
some English data [6, 7]. While challenging to compete with dominant
LLMs from large corporations such as OpenAI, the main motivation behind
developing these pre-trained models was to ensure cultural and linguistic
representativity by careful choices of data sources, as well as giving access
of the model weights to the Nordic research community.
This thesis aims to further build on AI Sweden’s foundational research by
focusing specifically on developing robust pipelines for creating high-quality
instruction tuning datasets in Swedish and evaluating their performance on
pre-trained LLMs. Moreover, while RLHF is an efficient approach towards
human alignment of LLMs, it requires a large amount of resources. Emerging

Introduction | 3

techniques like Direct Preference Optimization (DPO) use preference data
to directly fine-tune models; offering a more resource-efficient alternative.
Hence, it is also in the interest of this thesis to explore the extent to which
such datasets can be included as a part of the pipeline. This is done to further
shed light on the need for cultural and linguistic representativity in the Nordic
languages, as well as addressing issues in the lack of such data.

1.3 Research Questions
This study will be guided by the following research questions.

RQ1 What control measures are required to ensure a reliable Swedish
instruction dataset of high quality?

RQ2 To what extent can preference datasets, such as DPO datasets, be
included as part of the pipeline?

1.4 Purpose
The purpose of this study is to contribute to the research field of Swedish LLMs
by designing and implementing robust pipelines for high-quality instruction
tuning datasets in Swedish. The research seeks to address current limitations
in linguistic and cultural representation in instruction-tuned language models.
By focusing on the linguistic and cultural representativity of the Swedish
language, the aim is to enhance the reliability of Swedish LLMs. This is
done both in the academic interest of making research contributions within
the constraints and learning objectives of a master’s thesis, as well as in
collaboration with AI Sweden, where the insights gained from this study may
help progress their research for the next generations of Nordic LLMs.

1.5 Goals
The high-level goals of this thesis are to:

1. Develop a comprehensive pipeline for creating and curating high-quality
instruction tuning datasets in Swedish.

2. Implement strategies for quality control and dataset inspection to ensure
reliability and diversity.

4 | Introduction

3. Test, and refine the datasets with pre-trained LLMs, and evaluate their
performance using different benchmarks and evaluation strategies.

1.6 Research Methodology
The approach taken to the research methodology in this study is highly
experimental and exploratory. This involves an extensive literature study as
a first step, as well as establishing a picture of what kind of datasets and
approaches already exist. The pipeline can then be broken down into the
following four key steps:

Pipeline design and Dataset Creation

The first step involves collecting data in the Swedish language suitable for
instruction tuning. This includes various methods such as translating open-
source datasets from English to Swedish, generating synthetic data, and
collecting data from Swedish corpora that can be turned into instruction
format.

Dataset Curation and Quality Control

To ensure that the gathered data is of an accepted quality, this step is made to
understand the overall balance of the datasets, which involves balancing the
data into distinct task types and annotating the topic of the conversation. This
includes establishing an annotation guideline for consistency across tasks.

Instruction Tuning and Refinement

Using the datasets that have been gathered, they are tested by fine-tuning
pre-trained LLMs of varying parameter sizes with an experimental approach
towards hyperparameters to ensure that acceptable train-/evaluation losses are
achieved.

Evaluation and Benchmarks

Evaluating the resulting model is a crucial step to identify areas where the
resulting models can be improved. This can be achieved by using established
benchmarks across various tasks. The metrics computed are compared to the
baseline models and, if present, already instruction-tuned variants of the same
model. While small efforts are made to manually inspect and evaluate datasets

Introduction | 5

and model outputs, it is important to note that neither a user study nor extensive
human evaluation is conducted in this study. Insights gained from this step are
used to iteratively refine the datasets and further fine-tune pre-trained models.

1.7 Delimitations
This thesis focuses on the creation and evaluation of instruction-tuning
datasets, specifically in the Swedish language. Therefore, even though the
pre-trained models used in this project have been trained in more languages
than Swedish, other languages are considered out of scope. Further, this
thesis does not seek to provide a comprehensive comparison against all
existing instruction-tuned models; the comparisons made are solely against the
baseline models and other possible instruction fine-tunes of that same model.

While ethical human alignment is briefly explored, it must be stated that
the fine-tuned models that have emerged from this study are fully capable of
generating harmful and toxic content that may be considered offensive. This
study does not aim to create entirely non-toxic models, instead, the focus is put
on exploring and evaluating whether these biases are reduced through human
alignment.

1.8 Structure of the thesis
The thesis is structured into the following main chapters:

• Chapter 2 provides the foundational background and related work,
establishing the basis for this research.

• Chapter 3 outlines the methodologies employed to create and evaluate
Swedish instruction datasets.

• Chapter 4 presents the data gathered from the constructed pipeline and
the results from the evaluations.

• Chapter 5 gives an interpretation of the results and discuss the key
findings in a broader context.

• Chapter 6 concludes the study with a summary of the key findings, as
well as discussing the limitations and presenting suggestions for further
research.

6 | Background

Chapter 2

Background

This chapter presents an overview of the background needed to understand
the methods and approaches used in this study. This thesis is done within
the field of Natural Language Processing (NLP); a subfield within linguistics,
computer science, and artificial intelligence. The main objective of NLP is
to, across various applications, enable computers to model human language.
This includes the process of recognizing, understanding, interpreting, as well
as generating human language. Some application areas include machine
translation, speech recognition, and in the context of this thesis, Natural
Language Generation (NLG). NLG concerns itself with producing human
language in a way that is coherent and grammatically correct, effectively
mimicking the flow of human writing and speech, often from a given prompt
as input [8]. While the field of NLP stretches to the early days of computing,
current state-of-the-art approaches utilize Deep Learning to develop accurate
and realistic NLP models.

This study leverages Deep Learning to specifically fine-tune language models
to follow user intent with higher efficiency. The subsequent sections will
delve deeper into the specific technologies, such as LLMs, and fine-tuning
techniques, that are essential to understanding how these models behave,
as well as motivating the specific model that has been utilized within this
project. Further, given the limited hardware resources utilized in this
study, a background to resource-efficient approaches is also presented. The
background is concluded by exploring evaluation strategies for language
models which is crucial for understanding how model evaluation is utilized
in this study. A brief note is also made on related work, further motivating
this study’s relevancy.

Background | 7

2.1 Large Language Models
LLMs are different language models that are built upon neural network
architectures. These models can process and generate human language with
high accuracy, making them very proficient in various NLP tasks. The term
large refers to the size and complexity of the underlying neural network
architecture, as well as the vast amount of data that these models have been
trained on. While there is no strict definition of exactly how large this is, most
LLMs have parameter counts in the range of billions, trained on terabytes of
text data [9].

In this section, the underlying components of LLMs will be explored in
detail. This starts with an overview of neural network architectures and their
application in NLP, and continues to explore key architectural elements that
lay the groundwork for the following section on GPT models.

2.1.1 Deep Learning in NLP
Deep Learning is a subset of Machine Learning that utilizes Artificial Neural
Networks (ANNs), inspired by the biological networks of the human brain.
These networks consist of several layers of interconnected nodes (neurons)
and edges (synapses), which process data to model complex patterns and
relationships. Development in NLP has demonstrated that multi-layered
neural networks can produce impressive results across a wide range of
applications [10]. While there are different types of ANN architectures, one
of the more fundamental being the Feed Forward Neural Network (FNN)
depicted in Figure 2.1, the basic key components of these networks include:

• Input layer: The initial point of input in the network. Each input neuron
represents some piece of information. In the context of NLP tasks, this
is typically a word or token.

• Hidden layers: The layers between the input and output layers do not
interact directly with the external environment. This is where the input
is transformed into some meaningful output. In the context of NLP, the
hidden layers can identify syntactical or semantic patterns in the text.

• Output layer: This is the output of the model. Depending on the nature
of the task, these can represent values such as probabilities, continuous
values, or typically within NLG tasks, tokenized text.

8 | Background

• Activation function: Some mathematical operation performed at each
neuron that can enable the network to learn more complex patterns by
introducing non-linearity.

Figure 2.1: An example of a Feed Forward Neural Network.

2.1.1.1 Training a Neural Network

The process of training ANNs involves optimizing the adjustable parameters
in the network, such as the weight of the connections between neurons, as
well as bias terms. This optimization is done based on minimizing a loss
function, which represents the difference between the network’s predictions
and the actual labels of the training data. To achieve this, the network uses a
method called backpropagation, where gradients are calculated with respect
to the parameters, and are then used to adjust the weights such that the loss is
minimized [10]. The main objective is to minimize this loss function enough
for it to generalize well to unseen data, maintaining a low loss for that data as
well. Training is stopped based on some stopping criteria, e.g. when the loss
of unseen data is not decreasing.

2.1.1.2 Model Fine-Tuning

Fine-tuning is the process of taking a model that has been pre-trained on a large
dataset for a general task, such as NLG, and further training it on new unseen
data. This involves loading the pre-trained model and making adjustments to
all or parts of its parameters based on the new data presented, allowing the
model to adapt its knowledge to particular applications.

Background | 9

2.1.2 Tokenization
Working with textual data requires that the text is converted into a numerical
representation that a LLM can process. This process is known as tokenization.
Tokenization involves breaking the text down into smaller units, such as words,
characters, or subwords [11]. The primary trade-off in tokenization involves
balancing the level of detail in tokenized text with the size of the vocabulary.
That is, the text should be tokenized into as few tokens as possible to reduce
the computational complexity, while maintaining a vocabulary size that is not
too large. This means that subword tokenization is an optimal approach as it
provides a middle-ground by reducing the vocabulary size compared to word
tokenization, and reduces the amount of tokens in a text compared to character
tokenization [12].

2.1.3 Word Embeddings
Word embeddings are multidimensional vector representations of words,
mapped to a predefined vector space. Each dimension in the vector is meant
to signify some information about the properties of the word, as well as
semantical similarities to other words. This way, words that have similar
meanings will be closer to each other within this vector space. This enables
a language model to learn which words appear in similar contexts [13]. With
the introduction of the Transformer architecture came contextual embeddings,
allowing the vector representation of words to change dynamically depending
on the context.

2.1.4 Transformer
The transformer model, first introduced in the paper ”Attention Is All You
Need” by Vaswani et al. [14], introduced a breakthrough in the field of NLP.
Unlike prior prevalent architectures such as the Recurrent Neural Network
(RNN) that processes input sequentially, the Transformer can facilitate parallel
processing, resulting in faster training times and better scalability. The
Transformer model, illustrated in Figure 2.2 is an Encoder-Decoder Model - an
architecture essentially consisting of two ANNs. The idea behind an Encoder-
Decoder model is to encode the input into a compact representation that the
decoder can use to produce the output. The Transformer takes this one step
further by utilizing an attention mechanism. The Transformer is built upon
sequence-to-sequence models, typically used for machine translation, but has
proven to be highly versatile and adaptable on a wide range of NLP tasks.

10 | Background

Figure 2.2: Illustration of the Transformer model, as presented by Vaswani et
al. [14], with the Encoder network (left) and Decoder network (right).

Self-Attention

The concept of an attention mechanism was first presented by Bahdanau et al.
[13], allowing models to direct the focus on different parts of the input data
when producing the output; mimicking how humans pay attention to aspects
of what they are observing. This enables the model to capture more complex
patterns in the input data. The Transformer model was the first fully attention-
based architecture and built upon the idea of the Attention mechanism with
Scaled Dot-Product Attention and Multi-Head Attention.
The input data is transformed from the input embeddings into three matrices:
Queries (Q), Keys (K), and Values (V). The core idea is to compute a
weighted sum of V , where the weight is determined by the dot-product of Q
and K (representing their attention score). The Scaled Dot-Product Attention
is ultimately computed as:

Attention(Q,K, V) = softmax(
QKT

√
dk

)V (2.1)

By introducing several Attention heads, we can capture different aspects of
the relationships and patterns between tokens. Each attention head operates
independently, and its outputs are concatenated and linearly transformed to
produce the output, as depicted in Figure 2.3.

Background | 11

Figure 2.3: Illustration of Scaled Dot-Product Attention (left) and Multi-Head
Attention (right) [14]. The left-hand side shows how the attention weights
are computed, as demonstrated in Equation 2.1. The right hand side illustrates
how this process is repeated h times to produce the Multi-Head attention, with
different learned queries, values, and keys; enabling the model to attend to
different aspects of the input sequence.

2.2 Generative Pre-Trained Transformer
The first GPT model was presented by OpenAI in 2018 [15]. Based on
the Transformer architecture, it consisted solely of stacked Decoder-blocks,
exemplified in Figure 2.4, rather than the Transformers Encoder-Decoder
structure. This was sufficient due to its primary task being text generation,
meaning predicting the next token in a sequence. The GPT model utilizes
masked self-attention, where the masking is done to ensure that the predictions
for a token only depend on previous tokens in the sequence. This way, the
training objective of the GPT is to maximize the likelihood of the next token,
given the previous tokens.

The GPT models have undergone many upgrades. The GPT-2 model was
released with 1.5 billion parameters in 2019, and demonstrated impressive
capabilities of generating coherent text, given short prompts. The GPT-3
model possessed an impressive 175 billion parameters and proved to perform
well on a wide range of tasks. At the time of writing, the latest pre-trained
model from OpenAI is the GPT-4 model; whose parameter count is currently
unknown, but is nonetheless considered state-of-the-art.

12 | Background

Figure 2.4: The GPT-3 architecture, consisting of 96 decoder blocks, each with
96 masked attention-heads [1]. While similar to the Transformer’s decoder
block in Figure 2.2, the notable differences are the lack of input from the
encoder stage, and that the GPT outputs the token with the highest probability
to use in the next sequence, rather than outputting the actual probability
distributions.

2.2.1 GPT-SW3
AI Sweden released the first native GPT model for the Nordic Languages [6],
trained on The Nordic Pile; a large dataset consisting of 320 billion tokens,
in the languages Swedish, Danish, Norwegian, Icelandic, and English (as well
as data in select programming languages) [7]. GPT-SW3 is not one single
model, but rather a suite of six pre-trained models with varying parameter
sizes, stretching from 126 million to 40 billion parameters. The motivation
behind this is research-based, with the main purpose of exploring how the
ability of the models scale with respect to their sizes. A Tokenizer was trained

Background | 13

for the GPT-SW3 models consisting of a vocabulary size of 64000, also trained
on data from The Nordic Pile [16]. In addition to the pre-trained models, two
instruction-trained models were released, finetuned from the 6.7 and 20 billion
parameter models. The instruction models were trained on instruction datasets
that were translated to Swedish, Danish, Norwegian, and Icelandic, using the
GPT-SW3 base model for the translations with the help of few-shot prompts.
The original English instruction data was also kept for training.

2.3 Instruction Tuning
Instruction Tuning is a supervised fine-tuning technique to align a pre-
trained language model with specific tasks based on user instructions. This
includes training the model on a dataset composed of examples with pairs
of instructions and their corresponding outputs. This is done to improve the
performance of task-specific instructions and enhance user interaction in a way
that makes the model respond better to user queries and make it more user-
friendly. This has turned out to greatly improve the zero-shot learning abilities
of LLMs, meaning that it can perform well on tasks it has never seen before
[3].

Instruction Tuning was first conceptualized with the release of InstructGPT
by OpenAI [2]. Their proposed method for this kind of model alignment
was RLHF, where Instruction Tuning is the first step in that process. This is
followed by a reinforcement learning phase, where the model’s responses are
further refined with human annotators to fine-tune the reward model through a
reinforcement learning technique called Proximal Policy Optimization (PPO).
An illustration of this process is depicted in Figure 2.5.

The instruction examples typically consist of dialogue turns between the
Human and the GPT, which are used during the Instruction Tuning process.
One such instruction example is demonstrated in Example 1 below:

Example 1:

Human: What is the meaning of life?

GPT: The meaning of life varies for each person and can en-
compass seeking happiness, pursuing personal growth, fostering
relationships, contributing to society, and finding one’s purpose
and fulfillment.

14 | Background

Further, the examples can also include system prompts to guide the behavior
of the language model when interacting with the user. This can help establish
the desired tone and style of the conversation, exemplified in Example 2 below:

Example 2:

System: You are a helpful assistant, who always provides
explanations. Think like you are answering to a five-year-old.

Human: What is the meaning of life?

GPT: The meaning of life is like a big adventure where we learn,
play, make friends, help others, and find what makes us happy.
It’s about enjoying each day and being kind to the people around
us.

Figure 2.5: Reinforcement Learning from Human Feedback pipeline, where
Instruction Tuning is depicted within the first step, followed by training a
Reward Model and performing Proximal Policy Optimization [2].

2.3.1 Direct Preference Optimization
The main drawback with RLHF is that it requires quite extensive resources,
such as human annotators, and training a reward model from anew, to perform
PPO. DPO presents another approach to human preference alignment without

Background | 15

the need to train a separate reward model [17]. This relies on existing
preference data to directly fine-tune the model. The data examples are very
similar to that of Instruction Tuning but consist of pairs of answers where one
is preferred over the other, as exemplified below.

Example:

Human: What is the meaning of life?

Chosen: The meaning of life varies for each person and
can encompass seeking happiness, pursuing personal growth,
fostering relationships, contributing to society, and finding one’s
purpose and fulfillment.

Rejected: Sure, I’d be happy to answer that! The meaning of life
is to watch TV all day and eat junk food.

By directly utilizing human feedback in the preferences, DPO bypasses the
need for extensive computational resources that are typically required in
RLHF. This not only speeds up the preference alignment process but has
also been shown to yield better results compared to RLHF in many scenarios
[17]. The training objective in DPO is derived from the Reinforcement
Learning-objective in RLHF, giving higher reward to preferred answers, and
less reward to non-preferable ones, but it is redefined to adjust the parameters
of a probability distribution model, illustrated in Figure 2.6. When training
with DPO, the already instruction fine-tuned model is loaded into memory,
along with a copy of the model with its parameters frozen. Utilizing a frozen
reference model ensures that the parameter adjustments do not stray too far
from the original instruction fine-tuned model.

16 | Background

Figure 2.6: Training objective in RLHF (left) vs. DPO (right) [17]. The RLHF
illustration shows how the reward model is trained and the policy iteratively
refined based on human feedback. The DPO illustration demonstrates how
it aims to achieve the same alignment more directly through maximum
likelihood estimation applied directly to the final model, without the need for
a separate reward model or reinforcement learning phase.
Figure reproduced under the Creative Commons Attribution (CC BY 4.0)
license.

2.3.2 Chat Template
During training and inference of an instruction model, a chat template is
typically applied to each example, so as to give the model a structured format
and help it understand the different roles and expected types of outputs. One
standardization of this format is known as ChatML and utilizes a JSON file,
exemplified in Figure 2.7, where the role and message are specified. The
tokenizer then applies the chat template to use for tokenization, which can
differ depending on the tokenizer. However, it is standard practice to have a
defined start and end token, so the different turns can be distinguished. During
inference, the model continues the next turn, based on the conversation given.

{
”chat” : [

{”role”: ”user”, ”content”: ”Hello!”},
{”role”: ”assistant”, ”content”: ”Hi! How can I help you?”},
{”role”: ”user”, ”content”: ”What is ChatML?”},

]
}

Figure 2.7: JSON file demonstrating conversation turns in ChatML format.

2.4 Parameter-Efficient Fine-Tuning
Fine-tuning LLMs requires large resources, including time, energy, compu-
tational power, and memory. This requirement becomes more extensive the
more parameters the model has. Parameter-Efficient Fine-Tuning (PEFT) is

Background | 17

a way to optimize these resources by making adjustments to the model while
still preserving a large part of the underlying pre-trained model structure. The
following section will discuss PEFT techniques that are relevant to this study.

2.4.1 Low-Rank Adaptation
Low-Rank Adaptation (LoRA) is a parameter-efficient approach towards fine-
tuning pre-trained models. Instead of updating all weights, LoRA injects
traianable low-rank matrices into targeted layers of the network; while keeping
a large part of the pre-trained model parameters fixed. An illustration of this
fine-tuning approach is depicted in Figure 2.8. This approach reduces the
amount of trainable parameters significantly [18]. When utilizing LoRA, the
weight updates performed during fine-tuning can be denoted as:

W ′ = W + α ·∆W (2.2)

∆W is the adaptation low-rank matrix, with a chosen hyperparameter r that
denotes the rank. This adjusts the number of trainable parameters to r× (m+

n), where m and n denote the dimensions of the original weight matrix. The
hyperparameter α is chosen as a scaling factor that controls the magnitude of
the adaptation. After the fine-tuning process is done, the adapter is saved for
later use during inference, or can alternatively be merged into the base model.

Figure 2.8: Illustration of weight updates during fine-tuning with Low-Rank
Adaptation [18]. Unlike standard weight updating where the entire weight
matrix is adjusted, LoRA introduces a low-rank decomposition by updating
only a small, low-rank matrix ∆W (right), which is added to the pre-trained
weights W (left).

18 | Background

2.4.2 Quantized Low-Rank Adaptation
The main advantages with LoRA are computational efficiency and reduced
memory footprint. However, while a large part of the weights is frozen when
utilizing LoRA, they still need to be loaded into memory, along with the
gradients, meaning that the reduced memory footprint might not be sufficient.
Quantized Low-Rank Adaptation (QLoRA) presents an alternative approach
that combines quantization with low-rank adaptation, while still making it
possible to preserve a large part of the overall quality of the model [19]. This
results in even better computational efficiency and reduced memory footprint
and is ideal for scenarios where computational and memory resources are
severely constrained. The quantization process reduces the precision of the
model weights, typically from 32-bit floating points to 4-bit representations,
dequantizing to a higher precision float data type whenever computation is
made with QLoRA weights. QLoRA also introduces the 4-bit NormalFloat
datatype that ensures an equal number of values within each bin that the
original input is quantized into, resulting in a higher preserved accuracy than
4-bit integers and floats.

2.5 Evaluating & Benchmarking Language
Models

Evaluating language models involves various tasks that test different aspects of
their capabilities. Guo et al. [20] proposed a thorough taxonomy for evaluating
large language models, depicted in Figure 2.9. This involves a diversity of
tasks, each with the purpose of addressing different strengths and weaknesses
of the models. For a complete evaluation of a LLM, they identify the main
categories knowledge and capability, alignment evaluation, and safety. These
three key areas are meant to test the model’s capability to generate and
understand accurate information, as well as test human alignment and its
robustness. The evaluation is typically performed using an evaluation dataset
along with few-shot or zero-shot prompting. Few-shot prompting provides the
model with a small number of examples to guide the desired response format,
while zero-shot prompting relies solely on the model’s capability of producing
a correct answer in the desired format without any provided examples. The
metrics involved for measuring such evaluations typically involve accuracy,
F1-score, and Rogue-L score.
As a response to the plethora of existing evaluation datasets, different

Background | 19

benchmark suites have emerged to evaluate language models across a variety
of tasks in an attempt to give an overall performance summary of the
model; this is also an identified part of the evaluation taxonomy [20]. The
benchmarked models can be submitted to a corresponding leaderboard to
provide insight into how models fare against each other. Examples of
such leaderboards include the OpenLLM Benchmark [21], and Scandeval; a
benchmark for Scandinavian languages [22]. However, parts of the evaluation
datasets have shown to be sensitive to minor changes, which may also affect
the leaderboard rankings [23]. As an example, making minor changes to
multiple-choice questions datasets, such as changing answer choice symbols
to other symbols, or changing their order, has been shown to affect the
overall performance. This presents a potential inconsistency on benchmark
leaderboards representing robust evaluations, especially when comparing
models with each other.

Figure 2.9: Proposed taxonomy, by Guo et al, for evaluating large language
models, presented with major categories and sub-categories [20]. The three
major groups proposed for evaluating LLMs are knowledge and capability,
alignment evaluation, and safety. Figure reprinted with permission.

2.5.1 Evaluation Metrics
There are a lot of useful metrics for assessing the quality of a trained model,
typically in relation to a given evaluation task. Below are short descriptions

20 | Background

of evaluation metrics relevant to this study.

• Accuracy: The ratio of correctly predicted instances to the total
instances. This is most typically used in classification tasks.

• F1-Score: Typically used in binary classification tasks, where samples
are labeled as positive or negative. The focus is on the predictive
performance of the positive class. This is done by measuring the
precision and recall. These measurements are calculated using True
Positives (TP), False Negatives (FN), and False Positives (FP). In the
context of model evaluation, this can involve tasks such as binary
classifying harmful sentences. TP and TN represent instances where
the model correctly identifies a sentence as harmful (TP) or not
harmful (TN), whereas FP and FN represent instances where the model
incorrectly classifies the sentence as either harmful (FP) or not harmful
(FN). Precision and recall are calculated as:

Precision =
TP

TP + FN
,Recall =

TP

TP + FP
(2.3)

The F1-score is then computed as the harmonic mean of these.

F1 = 2
precision · recall
precision+ recall

(2.4)

This form of evaluation is used to evaluate a model’s performance not
only in terms of how accurately it generates the correct labels (precision)
but also how well it captures all relevant instances (recall). This is
particularly useful in datasets with disproportionate amounts of positive
and negative labels, providing a more balanced metric compared to
accuracy.

• Matthew’s Correlation Coefficient (MCC): Used in binary classifi-
cation tasks, similar to F1-score, but takes into account true and false
positives and negatives, thus making it more comprehensive in the sense
that it reflects the overall performance of the classification. MCC can
be relevant for a task such as sentiment classification, where we want
to classify the sentiment of a sentence as either positive or negative.
While the F1-score would also be a good metric for this kind of task,
MCC equally considers both positive and negative predictions while
also making it more comprehensive than an accuracy measurement.
This is computed as:

Background | 21

MCC =
(TP × TN)− (FP × FN)√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(2.5)

MCC ranges between -1 and 1, where -1 represents total disagreement,
0 is no agreement, and 1 represents best agreement.

2.6 Related Work
While there is a plethora of work related to instruction tuning in non-English,
there are few that focus on Swedish instruction data. Specifically, Holmström
& Doostmohammadi [24] conducted a case study on instruction datasets
translated from English to Swedish, fine-tuned on both Swedish and English
pre-trained LLMs. Their results emphasize the fine-tuned model’s zero-shot
performance, even on unseen data. They also express the potential for further
improvement in several directions, including translation quality and other
resourceful means for boosting data quality.

22 | Methods

Chapter 3

Methods

This chapter presents the process of constructing an iterative pipeline for
collecting and curating instruction datasets in Swedish. This starts with a
general overview of the pipeline, and then goes deeper into the individual
steps, including data curation, quality control, fine-tuning, and evaluation.

3.1 Pipeline Design
The overview of the pipeline, presented in high level in Figure 3.1, and in
detail in Figure 3.2, is similar to other established data pipelines, consisting of
collection, curation, visualization, training, and evaluation stages.

Figure 3.1: High-Level Overview of the pipeline.

Methods | 23

Figure 3.2: Detailed outline of the pipeline. The colors denote the stages
described in the high-level overview in Figure 3.1.

We start with three different types of sources in the data collection
stage. This includes translating already existing open-source data, generating
synthetic data, and gathering already existing Swedish data that are in a
similar format as instruction data. During the preprocessing, the collected
data is cleaned and prepared for transformation. This involves removing
duplicates, correcting errors, and generally extracting data fit for transforming;
meaning translating or synthetically generating data. Postprocessing entails
applying the curation stage again, however with the newly converted data.
This mainly includes identifying data that is of low quality as a result of the
transformation. It is also worth noting that original Swedish data is directly
post-processed, which is merely a result of the data not going through any
type of transformation. To establish the quality of the data, data visualization
is employed to assess the quality and coverage of the dataset. This is done to
gain an understanding of the topics covered in the data and identify gaps or
areas where additional data may be needed. Once the data is processed, the
instruction fine-tuning is performed on the curated instruction data. Based
on the evaluation results, fine-tuning is either further refined by adjusting
hyperparameters, or the iterative process is repeated by focusing on areas
needing improvement.

This iterative process is done in an attempt to ensure that the pipeline
adapts and improves over time, leading to higher-quality instruction datasets.

24 | Methods

3.2 Data Scope
The data collected for this study consists of a wide range of topics and tasks,
with the main goal of capturing a rich and diverse dataset in the Swedish
language. This covers various domains and practical applications. As an
example, Table 3.1 lists examples of tasks included in the annotator guidelines
for the Dolly dataset [25]. The collected data for this study consist of similar
tasks, however with a large focus on the Swedish language and context. With
this in mind, topics that have been explicitly excluded include coding and
translation tasks. This decision was made since these kinds of tasks have a
smaller focus on the Swedish language, with programming languages being
predominately in English and translation including other languages.

Instruction Task Example
Open Q&A What is the meaning of life?
Closed Q&A Is Stockholm the capital of Sweden?
Information Extraction Who was the king of Sweden during World War 2?
Information Summarization Please summarize what the European Union does.
Brainstorming Give me some ideas on how to stop procrastinating my studies.
Classification Identify which movie is Swedish: The Seventh Seal, Finding Nemo
Creative Writing Write a short story about an AI who became sentient.

Table 3.1: Example of Instruction Tasks from the Dolly annotator guidelines.

3.3 Data Collection

3.3.1 Translating Data
Translating data was a critical part of the study, as there is a lot of data in
English available for translation. Initially, several translation models were
tested and evaluated for the purpose of translating English data to Swedish,
including models like MADLAD from Google AI, Seamless M4T from Meta
AI and DeepL. The models were tested by translating a small instruction
dataset and manually evaluating the results based on grammatical accuracy
and contextual relevancy.

The translations provided a baseline, with DeepL presenting the best
overall performance. However, utilizing the DeepL API incurs a financial
expense, and despite it being the best out of the made translations, it still left
more to ask as the quality was not consistent across all types of instructional
content.

To address the limitations observed in other models, an existing fine-tuned

Methods | 25

translation model from AI Sweden [26] was further fine-tuned in an attempt to
capture this. Additional data was gathered by letting this model translate a lot
of examples, and manually correcting the mistakes. After experimentation,
improvements were observed, particularly with longer instructional content.
This iterative fine-tuning process resulted in a more reliable translation model,
capable of producing higher quality translations although there remains room
for further improvement.

The translations were made both on instruction datasets, with question-pairs
along with system prompts, as well as DPO-datasets that include a chosen and
a rejected answer.

3.3.2 Synthetic Data
Generating synthetic data was made as a supplement to the translation of
existing English datasets, addressing the limitation that such datasets are often
created from within an American context. The emphasis on synthetic data
was therefore placed on focusing on a Swedish context to ensure cultural
and contextual relevance. The two main methods of generating this content
consisted of the following:

1. ChatGPT-4: By providing ChatGPT-4 with topics related to Sweden
and Swedish culture, the model was asked to generate instruction
data based on these prompts. The generated question-answer pairs
were manually evaluated for grammatical accuracy and contextual
relevance; this included spell-checking and fact-checking statements. If
recurring patterns or redundancies were observed, additional prompts
and examples were provided to encourage more diverse and varied
question and task formulations. For an overview of how the prompting
was formulated and generated, please refer to Figure A.1 & A.2 in the
Appendix.

2. Distilabel: A framework that provides tools and pipelines for the
automatic generation of synthetic data. This includes methods such
as generating questions based on a list of topics or generating answers
based on a list of questions. The main way distilabel was utilized
in this study was by generating Swedish answers by providing a dataset
of questions in Swedish, and using open-source models for the answer
generations.

26 | Methods

3.3.3 Original Swedish Data
Already existing Swedish instruction data that has been manually created,
cleaned, and curated solely for the Swedish language is challenging to find
due to its scarcity. Despite this, an attempt was made to find original data in
this format by viewing Q&A sections on various Swedish websites and forums
that fulfill an acceptable format and desired instructional content. This data
was scraped and manually curated to ensure a good quality.

3.4 Data Curation
The curation stage consists of cleaning and annotating the data to remove noise
and inconsistencies, effectively enhancing its utility. This is a timely process
and require extensive resources and efforts if done manually. In the scope of
this project, manual curation techniques were kept at a minimum. Instead,
automatic data curation tools were utilized for this purpose. One such tool
was Lilac, which provided means for data exploration, curation, and quality
control [27]. Lilac allows for exploration by letting the user browse, search,
and filter the instruction examples. Further, automatic annotation can be done
e.g. by detecting language or toxicity in each example. We can also utilize
embedding models to compute and define concepts, which classify data as
belonging to the concept or not. This can, for instance, be used for detecting
code or non-English text.

3.4.1 Data Annotation & Cleaning
As previously mentioned, the data annotation methods established were
mainly automatic. Despite this, annotation guidelines were formulated to
ensure consistency. This means that, even if manual annotation is necessary
but is not feasible, the annotation process is treated similarly throughout every
iteration. The guidelines were specifically designed to standardize the process
of identifying and labeling data for cleaning and adjusting. This serves the
purpose of ensuring that the data collected is of high quality and within the
defined scope.

The annotation process differs slightly depending on whether it is done in
the pre-processing stage or post-processing stage and the type of data that has
been collected. Figure 3.3 demonstrates a flowchart of how data annotation
was handled. Each stage depicts how data was annotated for removal or
adjustment. Every path in the flowchart ends in a ”review” node, which

Methods | 27

represents the manual workflow which was not feasible to do for every example
apparent in the dataset. This manual review includes finer details, such as
examining the extent of American bias apparent in the examples. Although
this is vaguely defined, clear examples include peanut butter and jelly being
an example of a typical snack, the weather being given in Fahrenheit instead of
Celsius, and recipe measurements being provided in cups instead of deciliters.
Instead of doing manual annotation for every example, a small subset of
around 100 examples was sampled and reviewed. All the other annotation
nodes in the flowchart were either possible or partly possible to do using
automated annotation.

Figure 3.3: Flow chart representing the annotation process. The color coding
represents the different types of data sources.

28 | Methods

The automated annotation techniques were done using Lilac. This
includes, for translation, automatically annotating the language of each
example and removing non-English examples. As demonstrated in Figure
3.4, detecting code and translation examples was effectively done by semantic
keyword searches to detect translation tasks, and using concepts to detect code.
Other annotations were performed similarly.

Grammar and spell checks were mostly included as a part of the manual
review. However, efforts were made to automatically validate translated
examples, as the spelling and grammar of such examples were considerable
weaknesses. This was done utilizing an open-source Python library called
spylls [28], although this did not prove to be highly effective.

Methods | 29

(a) Identified questions related to code, with a score of above 0.5, in the Dolly-15k dataset.

(b) Semantic search of ”translation” in the Capybara dataset.

Figure 3.4: Examples of searches with Lilac that allow automatic annotation.

3.5 Data Visualization
Visualizing the collected and cleaned data allows for a general overview of
the tasks and subjects involved, as well as establishing the overall quality
of the data. This is particularly challenging when working with large text

30 | Methods

datasets consisting of several thousand examples. This section presents two
main methods established for effective data visualization.

3.5.1 Clusters
Clusters is a feature that can be utilized with Lilac. By utilizing a LLM,
every example can be clustered into different categories and sub-categories.
This helps provide an overview of the topics and tasks that are covered within
the data. For instance, Figure 3.5 depicts two categories identified in one
dataset. The leftmost side shows the categories identified and the proportion
each occupies in relation to the entire dataset. Within the categories, sub-
categories are identified, that specifically outline topics and tasks within
the larger category. Although clustering provides valuable insights and can
be considered another way of annotating data, it was not used in the data
annotation process. Instead, it served as a tool for understanding the dataset’s
structure and content distribution.

Figure 3.5: Example of two categories identified with Lilac Clusters.

3.5.2 Bunkatopics
Another tool used that utilizes embedding models to visualize data is an open-
source tool called BunkaTopics [29]. This tool provides an overview of

Methods | 31

the topics that are covered in the dataset. Since it is visualized using an
embedding model, we can observe clusters with topics that are considered
close to each other. For example, Figure 3.6 depicts a visualization of a
synthetically generated dataset. To the right, we can observe topics such as
words, sentences, and grammar being closely related to Swedish and language.
And in turn, Swedish and language are closely related to dialects and folk
music.

Figure 3.6: A synthetically generated dataset, visualized using BunkaTopics.

Depending on the size of the dataset, we can effectively adjust the amount
of clusters and the topics identified within them. The different coloring
helps depict the density of each cluster, and hovering over the visualization
will present some examples from the corresponding clusters. Using this

32 | Methods

visualization, we have the flexibility to construct a new dataset by excluding
topics that do not align with the data scope.

3.6 Fine-tuning Setup
This section covers the technical aspects of the fine-tuning environment,
including the selection of the pre-trained model, chat template, and
configuration of training parameters.

3.6.1 Pre-trained Model Selection
For the pre-trained model, GPT-SW3 from AI Sweden was chosen due to
its extensive training on Nordic data [6]. Even though it is based on the
older GPT-2 architecture, its strong focus on Nordic linguistic nuances made
it preferable over other open-source pre-trained models, as they are typically
trained on predominantly American data. For all of the experiments, the 6.7
billion parameter model was chosen as this was considered a balanced trade-
off between computational efficiency and performance.

3.6.2 Chat Template
The chat template used for fine-tuning is similar to the template used in already
existing instruction models from AI Sweden. Figure 3.7 demonstrates an
example with an applied chat template, ready for tokenization. Here, <s>
represents the beginning-of-sentence token (BOS), and <|endoftext|>
represents the end-of-sentence token (EOS). These are both defined within
the GPT-SW3 tokenizer. It is worth noting that the EOS token appears in
the beginning of the example, this is because the resulting tensors are packed
together during training to optimize efficiency.

Some of the fine-tuning experiments incorporated a system prompt, while
others did not. In the cases they did not, the system prompt (if existent) was
included as a part of the user prompt.

Methods | 33

<|endoftext|><s>
SYSTEM:
You are a helpful assistant whose name is Leif.
<s>
USER:
Hello! What's your name?
<s>
ASSISTANT:
Hello! I am Leif, how may I help you?
<s>

Figure 3.7: Example of applied Chat Template with BOS-token and EOS-
token.

3.6.3 Training Configuration
Both Instruction Tuning and DPO alignment were performed with QLoRA,
with either 4-bit or 8-bit quantization and differing LoRA parameters. With
both setups, we utilize AdamW Optimizer and Cosine Annealing Scheduler,
with an initial learning rate within the range of 10−6 to 10−4. The fine-
tuning environment was set up using PyTorch, along with the Huggingface
Transformers library [30, 31]. The Huggingface PEFT library was used for
LoRA setup [32]. All of the fine-tunes were performed using a NVIDIA A100-
SXM4-40GB GPU.

3.6.3.1 Instruction Tuning

The general approach taken to instruction tuning was to fine-tune for many
amount of epochs and implement early stopping when no further decrease in
evaluation loss could be observed.

Below is a list of different hyperparameters used. Considering that these
numbers differed between experiments, the hyperparameters are given in
spans.

• Batch Size: 4-8

• Gradient Accumulation Steps: 10-20

• Effective Batch Size: 30-160

• LoRA Rank: 64, 128, 256

• Epochs: 3-20

34 | Methods

• Validation Split: 20%

The amount of gradient accumulation steps was chosen depending on the
desired effective batch size. As a rule, this was kept relatively high to mimic
the batch size used for the already existing GPT-SW3 instruction models. With
increased gradient accumulation steps, the convergence of the evaluation loss
took longer. Training typically took 1 to 4 days.

3.6.3.2 Direct Preference Optimization

For DPO-alignment, the same setup was used for every fine-tuning. This
is due to the limited amount of DPO experiments performed, as opposed to
Instruction Tuning. Training typically took around 8 hours.

• Batch Size: 3

• Gradient Accumulation Steps: 20

• Effective Batch Size: 60

• LoRA Rank: 256

• Epochs: 1

• Validation Split: 15%

3.7 Evaluation
In this study, three main methods of evaluation were employed. All of them
involve measuring the model outputs based on a task from a given dataset.
With the Both few-shot and zero-shot evaluations were made.

3.7.1 ScandEval
Seven different evaluation tasks in Swedish were performed using the
ScandEval benchmark suite [22]. These include three original Swedish
datasets and four translated datasets. ScandEval does not utilize a chat
template but instead relies on the model’s few-shot capabilities. Below is a
list detailing the different datasets along with what they evaluate, how they are
used for evaluation, as well as the main metric used.

Methods | 35

• SUC3 - Swedish Named Entity Recognition
Task: Identify and categorize entities in text, such as names of people,
organizations, locations, etc. This is used to evaluate the model’s ability
to recognize entities in text, demonstrating how well it can understand
and extract relevant information from pieces of text.

Metric Used: Micro-Averaged F1-Score

• SweReC - Swedish Sentiment Classification
Task: Classify the sentiment of a given example as either positive,
negative, or neutral. This is used to evaluate the model’s ability to
identify emotional tone in Swedish text.

Metric Used: Matthew’s Correlation Coefficient (MCC)

• Scala-SV - Swedish Linguistic Acceptability
Task: Given a sentence, determine whether it is grammatically correct
or not.

Metric Used: Matthew’s Correlation Coefficient (MCC)

• ScandiQA-Sv - Question Answering
Task: Given a small piece of text, answer a question about it in a trivia-
like manner.

Metric Used: Exact Match (Accuracy)

• SweDN - Swedish Summarization
Task: Summarize the given examples. This is used to measure
the model’s ability to condense Swedish text while maintaining the
essential parts of the text. The evaluation is done using BERTScore,
which evaluates the semantic similarity of the summarized text to a
corresponding human-written one.

Metric Used: BERTScore

• MMLU-Sv - Knowledge
Task: Answer questions correctly, similar to ScandiQA, however with
four alternatives presented to the model and no prior information given.

Metric Used: Matthew’s Correlation Coefficient (MCC)

36 | Methods

• HellaSwag-Sv - Commonsense Reasoning
Task: Given an incomplete example, choose the correct completion
between four given options.

Metric Used: Matthew’s Correlation Coefficient (MCC)

The benchmark runs the evaluation on each dataset 10 times using different
evaluation metrics depending on the task. The score is presented as a mean
value of the 10 runs, along with a confidence interval.

3.7.2 BiaSWE
BiaSWE is a dataset presented by AI Sweden consisting of 450 examples in
Swedish annotated with misogyny or hate speech [33]. Using this dataset, the
model was asked to classify each example with either hate speech, misogyny,
both, or neither. The evaluations were made using few-shot prompts and
measured using F1-score averaged over 10 runs. Figure 3.8 illustrates how
prompting was done, however with the few-shot examples oppressed due to
its harmful nature.

Identifiera följande mening som hets mot folkgrupp och/eller
misogyni. Svara enligt:
hets mot folkgrupp: Ja/Nej
misogyni: Ja/Nej
<few-shot examples>

Figure 3.8: Prompt demonstration for BiaSWE evaluation.

3.7.3 SweSAT (Högskoleprovet)
The Swedish Scholastic Aptitude Test (SweSAT) is a standardized test in
Sweden used for university admissions. It consists of a verbal part, testing
reading comprehension and word knowledge, and a quantitative part testing
mathematics and logical thinking.

Three different categories from the verbal parts were extracted from 13
SweSAT tests between fall 2013 and spring 2019. These include the three
categories ORD, MEK, and LÄS. These three were specifically chosen with
the motivation that they explicitly measure Swedish language capability. They
test the following:

Methods | 37

• Word Comprehension (ORD): Given a word or expression, pick the
option that best corresponds to its meaning. Choose between 5 options.

• Reading Comprehension (LÄS): Given a long text, answer questions
about the content of the text. Choose between 4 options.

• Sentence Completion (MEK): Given a text with gaps, fill in the words
that should be in the gaps. Choose between 4 options.

The models were evaluated with both few-shot and zero-shot prompts.
However, due to the limited context window of 2048 tokens, the LÄS part
was only evaluated within a zero-shot setting due to the long text being part of
the prompt. The performance was evaluated over 10 runs, using accuracy as
the primary measurement. Since this evaluation setup only includes a subset
of the verbal part, using a standardized score as part of the evaluation was not
considered.

38 | Results and Analysis

Chapter 4

Results and Analysis

This chapter presents the results acquired in this study. First, an overview of
the data collected and the experiments conducted are presented. After that,
the results from the performed evaluations and benchmarks are presented.

4.1 Dataset Summary
The datasets used in this study can be categorized into three types: translated,
original Swedish, and synthetic. Table 4.1 provides a summary of these
datasets. A total of five translated datasets (one of them consisting of DPO-
pairs), two original datasets, and three synthetic datasets were collected. The
size of the data refers to the final size since some datasets have been iterated
upon with added and removed examples. All of the translated datasets are
derived from existing open-source datasets, ending with ”SV” to denote their
translation to Swedish.

Full details of each dataset, including their origins, content specifics, and
curation methods, can be found in Appendix A.2.

Results and Analysis | 39

Type Dataset Name Brief Description
Translated SlimOrca-SV Curated instruction data with

system prompts (∼35k exam-
ples)

Translated CamelAI-SV Domain-specific instruction
data in science and math
(∼7k examples)

Translated Pure-Dove-SV Multi-turn conversations
(∼2.8k examples)

Translated OpenHermes-SV Diverse instruction dataset
collection (∼28k examples)

Translated Orca-DPO-Pairs-SV DPO-pairs derived from
OpenOrca (∼8k examples)

Original BibblanSvarar Q&A from Swedish libraries
(∼4.1k examples)

Original HP-ORD Swedish SAT vocabulary
questions (∼3k examples)

Synthetic BibblanSvarar-Synthetic Generated based on
BibblanSvarar questions
(∼4.1k examples)

Synthetic swedish-instruct-data-chatgpt4 Sweden-related Q&A pairs
(∼1.3k examples)

Synthetic BezzerWizzer Swedish board game Q&A
(∼0.5k examples)

Table 4.1: Overview of datasets used in the study

4.1.1 Dataset Combinations for Training
Table 4.2 shows an overview of the datasets that were created, as well as the
sources they contain. Some of the datasets have been iterated upon, while
others have been completely discarded after experimentation. The ones that
were ultimately discarded were so either due to lacking translation quality or
bad overall quality. Specifically, these datasets include the first OpenHermes +
HP dataset, as well as BibblanSvarar. However, the latter was later reworked
to incorporate synthetic answers. Prior to fine-tuning, these datasets have been
added together in different combinations to make up a larger dataset. To keep
track of these larger datasets, they were given the name ”hopkok”, however
with the exception of the first dataset which was regarded as an initial test
experiment.

40 | Results and Analysis

Dataset Name Dataset Sources Size

OpenHermes + HP OpenHermes-SV
HP-ORD ∼28k

hopkok-v1

SlimOrca-SV-33K
Pure-Dove-SV
Swedish-instruct-data-chatgpt4
BibblanSvarar

∼41k

hopkok-v2

SlimOrca-SV-35K
Pure-Dove-SV
Swedish-instruct-data-chatgpt4
CamelAI-SV-7k
BezzerWizzer-0.25k

∼45k

hopkok-v3

SlimOrca-SV-35K
Pure-Dove-SV
Swedish-instruct-data-chatgpt4
CamelAI-SV-7k
BezzerWizzer-0.5k
BibblanSvarar-Synthetic

∼50k

Table 4.2: The main datasets used for training.

4.2 Experiment Summary
A total of five major instruction fine-tunes were performed from the pre-trained
GPT-SW3-6.7B model. Out of these, two were further fine-tuned with DPO
alignment.

4.2.1 Instruction Tuning Experiments
Table 4.3 presents an overview of the fine-tunings along with relevant
parameters.

In the initial experiments, the effective batch size was kept relatively high
to ensure sufficient data per iteration. However, this was decreased throughout
the iterations, to observe impact on performance, and then increased again for
the final experiments. The same idea was applied to the number of epochs,
typically because increased gradient accumulation steps result in a slower
reduction of evaluation loss.

Additionally, a system prompt was included in the chat template for two
of the experiments. However, after observing that the inclusion of a system

Results and Analysis | 41

prompt did not lead to a substantial increase in evaluation performance, it was
discarded for the final two experiments.

For the LoRA parameters, 4-bit quantization was kept initially, with the
nf4 data type. However, this was later changed to 8-bit quantization. The
rank of the LoRA matrices was kept at 128 for a majority of the experiments
to ensure a sufficient trade-off between batch size and the number of trainable
parameters.

Exp # Dataset Sys. Batch Loss Epochs LoRA QLoRA
Prompt Size Rank Quant.

1 OH + HP No 160 1.358 20 64 4-bit
2 hopkok-v1 Yes 120 1.408 12 128 4-bit
3 hopkok-v2 Yes 30 1.290 3 128 8-bit
4 hopkok-v2 No 60 1.285 6 128 8-bit
5 hopkok-v3 No 100 1.299 6 128 8-bit

Table 4.3: Overview of the instruction tuning experiments performed. The loss
refers to the final evaluation loss. Batch Size refers to gradient accumulation
steps + device batch size.

4.2.2 DPO Experiments
Table 4.4 depicts information about the two main DPO alignments performed.
The training was done for one epoch, which was suggested to be sufficient by
the authors of the DPO paper [17]. This proved efficient, as the evaluation
accuracies (meaning the ratio of which the preferred and rejected answer was
identified) were fairly high. The batch size was kept at 60, which was deemed
sufficient due to the low amount of training data. None of the DPO fine-tunes,
nor their base models included system prompts as part of the applied chat
template.

42 | Results and Analysis

Exp # Dataset Base Batch Acc. Epochs LoRA QLoRA
Model Size Rank Quant.

1 Orca-DPO-SV hopkok-v2 60 0.98 1 256 8-bit
2 Orca-DPO-SV hopkok-v3 60 0.99 1 256 8-bit

Table 4.4: Overview of the two DPO experiments performed. Acc. refers
to the final evaluation accuracies, meaning the model’s ability to identify the
preferred response over the rejected one during evaluation. Both experiments,
as well as the base models, did not utilize system prompts.

4.3 Evaluation

4.3.1 ScandEval
In this subsection, results from the ScandEval evaluations are presented along
with key observations. The following figures depict bar charts for different
evaluation datasets from the ScandEval benchmark suite. All of the model
metrics have been averaged over 10 runs, and all of the evaluations were
done using few-shot prompts, with no chat templates applied. For simplicity,
models produced within this project are referred to as experiment models. The
GPT-SW3 base model, along with its official instruct model, are referred to as
baseline models. The scores are represented by different metrics, however, all
of the scales of the scores range from 0-100, where 100 represents the best
possible score.

Text Classification

In Figure 4.1, the results from the sentiment classification dataset SweReC are
presented. The models were evaluated using MCC, where the -1 to 1 scale has
been normalized to fit a 0-100 scale. This means that a score of 50 represents a
random guess. In this task, the model was prompted to identify the sentiment
in a given text. Below is an example of one of the individual shots used in a
few-shot prompt for this evaluation:

Recension: Lika bra varje gång
Sentiment: positiv

The best-performing model is the GPT-SW3 base model (77.47). However, all
of the experiment models outperform the baseline GPT-SW3 instruct model,

Results and Analysis | 43

with the best experiment model being the hopkok-v3 model (75.97). This
translates roughly to 0.5 on the regular MCC scale, indicating a moderately
positive correlation. It is also notable that both DPO fine-tunes resulted in
worse performance than the rest of the experiment models.

Figure 4.1: Comparison between the baseline models and the experiment
models on text classification tasks (few-shot). The evaluation was done by
calculating the Matthews Correlation Coefficient, normalized to fit the 0-100
scale.

Information Extraction

Results from the Named Entity Recognition dataset SUC3 are presented in
Figure 4.2. The model was prompted to identify named entities and classify
them as e.g. person, organization, or location. This can be exemplified in the
following prompt:

Mening: Byar i lidläge vid de stora skogssjöarna
Bygdeträsket och Göksjön.
Namngivna entiteter: {”person”:[],
”plats”:[”Bygdeträsket, Göksjön],

44 | Results and Analysis

”organisation”:[],
”diverse”:[]}

Here, hopkok-v3, along with some other experiments, outperforms the baseline
models. Again, the baseline instruct model demonstrates subpar performance
in comparison to the other models.

Figure 4.2: Comparison between the baseline models and the experiment
models on information extraction tasks (few-shot). The evaluation was done
by calculating the Micro Averaged F1-score.

Grammar

The results from the linguistic acceptability dataset Scala-SV are presented in
Figure 4.3. In this task, the model was tasked with classifying a given sentence
as either grammatically correct or incorrect, as exemplified below. This was
measured using MCC, normalized to fit the 0-100 score.

Mening: Var får man tag i dem i lilla Sverige?
Grammatiskt korrekt: ja

Results and Analysis | 45

Overall, the performances on this task were significantly poor, with scores
ranging from 1-10, indicating almost inverse correlation. The evaluations
show that the baseline instruct model performs best, with only hopkok-v1
and hopkok-v2-nosystem outperforming the pre-trained base model by a small
margin.

Figure 4.3: Comparison between the baseline models and the experiment
models on grammar tasks (few-shot). The evaluation was done by calculating
the Matthews Correlation Coefficient, normalized to fit the 0-100 scale.

Question Answering

The results from the question-answering dataset ScandiQA-SV are depicted
in Figure 4.4. The model was tasked with answering trivia questions based
on a small piece of information, without being presented with alternatives. If
the exact answer was found within the generated output, it was considered a
match. This was measured by calculating the proportion of exact matches.
Below is an example of a few-shot prompt:

Text: ”(Sittin' On) The Dock of the Bay” är
en låt som är skriven av soulsångaren

46 | Results and Analysis

Otis Redding och gitarristen Steve Cropper.
Fråga: Vem sjöng Sitting on the dock of the bay?
Svar på max 3 ord: Otis Redding

The evaluations show somewhat consistent results, with some of the
experiments outperforming the baseline models by a small margin. Most
models answer the questions correctly around half the time, indicating a
moderate level of knowledge.

Figure 4.4: Comparison between the baseline models and the experiment
models on question answering tasks (few-shot). The evaluation was done by
calculating the proportion of exact matches.

Summarization

The results from the Swedish summarization dataset SweDN are shown in
Figure 4.5. The model was tasked with summarizing a given text, and
the BERTScore was calculated by comparing the semantic similarity of the
summary to that of a human-written counterpart using contextual embeddings.
To perform the calculation, ScandEval utilizes an external BERT-model,
abstracted from the user, on the generated GPT-output.

Results and Analysis | 47

The evaluations show overall that the baseline models outperform all of the
experiment models. However, both DPO-finetunes have resulted in boosted
performance. The best-performing models have a BERTScore of around 60,
indicating a moderate level of similarity to the reference summary.

Figure 4.5: Comparison between the baseline models and the experiment
models on summarization tasks (few-shot). The evaluation was done by
calculating the BERTScore.

Knowledge

In the knowledge dataset MMLU-SV, shown in Figure 4.6, the model was
tasked with answering questions given four alternatives, and evaluated with
MCC. Below is an example of one of the individual shots used in a few-shot
prompt:

Fråga: Termen babyboomgenerationen hänvisar
till personer som
Svarsalternativ:
a. Föddes före andra världskriget
b. Har haft en extraordinär mängd avkomma

48 | Results and Analysis

c. Föddes precis efter andra världskriget
d. Har uppfostrat sina barn i små byar
Svar: c

A trend of increased performance can be observed throughout the experiment
iterations. The hopkok-v3-dpo model has also increased its performance
compared to its hopkok-v3 base model. However, like the grammar
evaluations, the MCC scores show an almost negative correlation; indicating
no better than a random guess. This was also confirmed when later observing
accuracies, which showed around 25%, with hopkok-v3-dpo having roughly
32% accuracy.

Figure 4.6: Comparison between the baseline models and the experiment
models on knowledge tasks (few-shot). The evaluation was done by calculating
the Matthews Correlation Coefficient, normalized to fit the 0-100 scale.

Reasoning

Results from the HellaSwag-SV dataset are shown in Figure 4.7. The answers
were evaluated using MCC, again normalized to fit the 0-100 scale. Below is
a demonstration of one of the shots used in the few-shot prompts.

Results and Analysis | 49

Fråga: En man krattar löv i en trädgård.
Han använder en transparent påse för att
packa ihop dem. han
Svarsalternativ:
a. använder en stor hink för att tvätta löven.
b. knäböjer och lägger det han krattar på marken.
c. flyttar sedan påsarna från trädgården och
klipper gräsmattan.
d. skrapar ihop löven och lindar dem med tejp.
Svar: c

The evaluation shows an increase in model performance across all experiments
compared to both baseline models. Both DPO-finetunes also demonstrate
increased performance compared to their base models. While hopkok-v3-
dpo shows the most substantial increase in performance, it reaches a score
of 33. This roughly corresponds to −0.7 on the regular MCC scale, indicating
a negative correlation.

50 | Results and Analysis

Figure 4.7: Comparison between the baseline models and the experiment
models on reasoning tasks (few-shot). The evaluation was done by calculating
the Matthews Correlation Coefficient, normalized to fit the 0-100 scale.

4.3.2 BiaSWE
The BiaSWE evaluations were performed using only the GPT-SW3 Instruct
model as the baseline, as all of the evaluations were done using an applied
chat template along with 3-shot prompts.

Figure 4.8 demonstrates the F1-scores, averaged over 10 runs, on hate
speech and misogyny respectively across all the models. All of the experiment
models were better at identifying hate speech than misogyny. Both DPO-
finetunes became better compared to their base models, with hopkok-v3-dpo
being the best model overall at identifying both hate speech and misogyny.
While it is apparent that the baseline instruct model performs the worst, it
identifies misogyny more often than hate speech.

Results and Analysis | 51

Figure 4.8: Comparison of the model’s capabilities of identifying Hate Speech
and Misogyny (F1-score). Best and worst models are indicated for both hate
speech and misogyny.

4.3.3 SweSAT
SweSAT evaluations were performed using only the GPT-SW3 Instruct model
as the baseline. Due to the inclusion of a chat template, the pre-trained GPT-
SW3 model was not included. Both five-shot and zero-shot evaluations were
made. However, due to the limited context window, the LÄS parts were only
evaluated with zero-shot prompts. The metric used was accuracy, with a scale
ranging from 0 to 1.

4.3.3.1 Word Comprehension (ORD)

Figure 4.9 illustrates the results from both zero-shot and five-shot evaluations
on the word comprehension part. The model was given a word and asked to
pick the meaning of the word among five alternatives. Overall, the models
perform better in a zero-shot setting, with hopkok-v3-dpo demonstrating the
best zero-shot performance along with the lowest variance. However, many
models are close to random selection (0.2), especially in a five-shot setting.

52 | Results and Analysis

Figure 4.9: Comparison of model performance on Word Comprehension,
showing accuracy scores (scale 0-1) along with standard deviations outlined
as error bars. Best and worst model is indicated for both 0-shot and 5-shot
evaluation.

4.3.3.2 Reading Comprehension (LÄS)

Figure 4.10 illustrates the results from five-shot evaluations on the reading
comprehension part. The model was given a long text and was then asked
questions about the text, along with four options. An improving trend can be
seen throughout every model iteration, although with only the hopkok-v3-dpo
model outperforming the baseline instruct model by a small margin.

Results and Analysis | 53

Figure 4.10: Comparison of model performance on Reading Comprehension,
with 5-shot prompts, showing accuracy scores (scale 0-1) along with standard
deviations outlined as error bars.

4.3.3.3 Sentence Completion (MEK)

Figure 4.11 illustrates the results from both zero-shot and five-shot evaluations
on the Sentence Completion parts. The model was given a text with blank
spaces and was given four possible options that fill the blank spaces.

In contrast to the ORD scores, the different shot types fluctuate with five-
shot demonstrating better performance in some cases. Similar to the other
scores, the zero-shot performance of the hopkok-v3-dpo displays the best
performance of the experiment models, although the baseline instruct model
outperforms it by a small margin. A lot of models are also close to random
guesses (0.25).

54 | Results and Analysis

Figure 4.11: Comparison of model performance on Sentence Completion,
showing accuracy scores (scale 0-1) along with standard deviations outlined
as error bars.

Discussion | 55

Chapter 5

Discussion

This chapter provides an interpretation of the results, discussing key
implications and significant observations.

5.1 Benchmark Summary
The ScandEval evaluations revealed mixed results. Our experiment models
outperformed the baseline in four tasks but showed similar or worse
performance in three tasks. Specifically, in information extraction (Figure
4.1) and text classification tasks (Figure 4.2), the baseline instruct model
(GPT-SW3-6.7b-v2-instruct) demonstrates subpar performance compared to
both the baseline pre-trained model (GPT-SW3-6.7b-v2) and the experiment
models. Interestingly, these are two out of three tasks in the ScandEval
benchmark with datasets created originally in Swedish (SUC3 & SweReC). In
both of these tasks, a majority of the experiment models show better or similar
performance to the baseline pre-trained model; despite the lack of included
chat template. Moreover, we can see a trend of better performance throughout
model iterations, which might suggest a result of better curated and correct
Swedish data.

Contradictory to the insights from the aforementioned tasks, the
experiment models demonstrated worse performance than both baseline
models in Swedish grammar tasks (Figure 4.3). While the dataset used
for this task (Scala-SV) is based on data created originally in Swedish, the
authors of ScandEval have not been able to verify its grammatical correctness
[22]. Therefore, the contradicting results from this task may come from
a lack of validity and reliability in the task and its dataset. Regardless,
it is noteworthy that the baseline instruct model performs best in this task

56 | Discussion

while performing significantly worse in the other tasks with datasets created
originally in Swedish.

The rest of the tasks in ScandEval, with translated datasets, show either
a small increase in performance or not at all. Since these datasets have
been translated from English datasets, using DeepL, the quality of these
translations can be put into question. For instance, in the summarization task
(Figure 4.5), the best-performing model out of the experiment models was the
OpenHermes + HP model. This model was considered a test model/dataset
and has overall shown the worst performance in the rest of the evaluations.
One explanation of this outlier result can be that this model is ”closest” to the
base model, considering that it had the lowest amount of trainable parameters.
Nonetheless, we see a rather large increase in all of the experiment model
performances in both knowledge (Figure 4.6) and reasoning (Figure 4.7) tasks;
with DPO-finetunes boosting that performance even further. One possible
explanation behind this is the way these tasks are presented to the model. Both
of these tasks present the model with four options A — D, and the hopkok-v3-
dpo model performs well in these kinds of tasks. This observation is further
emphasized by the SweSAT evaluations (Section 4.3.3), where the zero-shot
performance of hopkok-v3-dpo exceeds all the other models in the ORD part
(Figure 4.9) with an average accuracy of 38%, whereas no other model exceeds
30% accuracy, with the baseline having only 25%. The MEK part (Figure
4.11), however, shows similar results to the baseline, with both hopkok-v3-
dpo and the baseline having an average accuracy of roughly 30%. And while
the five-shot performance in these tests shows rather unstable results, hopkok-
v3-dpo still outweighs the baseline instruct model by a small amount (42%
compared to 40% accuracy) in the LÄS part (Figure 4.10). Overall, the models
performed considerably better in a zero-shot setting, which is consistent with
the findings from Wei et al [3], where it is suggested that fine-tuned language
models perform better in such settings.

Addressing the results from the BiaSWE evaluation (Section 4.3.2), the
DPO-aligned models demonstrate an increased ability to identify both hate
speech and misogyny in the input text. This might suggest that these models
are better aligned. While evaluating human alignment is not in essence part of
the scope of this thesis, the inclusion of DPO datasets has shown an increased
performance in some evaluation tasks. Despite that, a more thorough analysis
would be needed to ensure that the model is more aligned e.g. in the sense of
producing toxic output.

While the focus of this thesis is on the relative performance of the models,

Discussion | 57

the performance boosts observed are still considered poor overall performance
when put in a wider context. This can be best explained by the outdated GPT-2
architecture and its 6.7 billion parameters. Even though increased performance
with low variances has been observed, many evaluations represent random
guesses statistically.

In summary, out of all the seven models fine-tunes created, the final instruct
model hopkok-v3 and its DPO-tuned variant hopkok-v3-dpo has overall the
most stable and best performance across the evaluations performed. While the
DPO-tuned variant outperforms the non-DPO-tuned model in a lot of specific
evaluation tasks, in the cases it does not, it performs rather badly compared to
other experiment models.

5.2 Assessing the Pipeline

5.2.1 Instruction Data
Addressing RQ1, where we asked about the control measures required to
ensure a reliable Swedish instruction dataset of high quality, we look into the
key variables identified that have provided higher-quality datasets throughout
the model iterations.

First, the quality of translated datasets plays a significant role in capturing
both linguistic and cultural nuances of the Swedish language. The translation
model that was utilized produced mostly good translations. Even so, if the
datasets are originally from American sources, they carry biases that can
impact the quality despite the translations being good. To tackle these biases,
we explored synthetic data generation and the use of data originally created in
Swedish. The former showed promising results, and the latter was significantly
more challenging to gather. Using ChatGPT-4 to generate both Q&A pairs
based on given topics gave good examples, however, it also resulted in some
grammatically and factually incorrect examples. Gathering data from a Q&A
forum such as BibblanSvarar resulted in the model outputting more links, as
this was apparent in a lot of these examples. Synthetically generating answers
based on the questions from BibblanSvarar proved to be a good way to tackle
this. This potentially allows the model to catch impurities in questions (such as
spelling errors) as this was apparent in the questions, while still understanding
and answering them desirably. The drawback of this is that it requires a model
that produces good answers in Swedish, and while the model used (Llama-
8B-Instruct) produced a lot of good answers, extensive cleaning had to be

58 | Discussion

done to remove bad examples. Moreover, generating data from questions of a
quiz game such as BezzerWizzer did seem to boost model performance in both
knowledge and question-answering tasks.

The automatic aspect of the cleaning and curation stage proved efficient
and helped produce data of higher quality. This can also be a reason for
improved performance throughout iterations, as further cleaning was done to
the already existing datasets. Even though an attempt was made to manually
annotate examples by inspecting a small subset of the dataset, the overall lack
of manual annotation and curation may have led to insufficient improvement in
quality. Nevertheless, visualizing the dataset by inspecting the overall topics
and tasks helped ensure a general level of quality.

The technical aspect of model training should also be considered. With
fine-tuning taking several days, optimizing hyperparameters and achieving a
desirable evaluation loss was time-consuming. This trial-and-error approach
may have impacted the resulting models.

Finally, the evaluation stage provided an effective strategy for identifying
areas that needed improvement and supported the iterative nature of the
pipeline. However, evaluation benchmarks such as ScandEval would benefit
from further verification, as these datasets also face the aforementioned biases
from translated datasets. This is one of the motivations behind formulating
the additional evaluations BiaSWE and SweSAT. Despite this, the absence of
human evaluation is a significant flaw, as this addition would allow for a more
thorough evaluation of cultural and linguistic nuances in model outputs.

In summary, these key variables — improving translation quality,
leveraging synthetic data, efficient cleaning and curation, and comprehensive
evaluation — enhanced the overall quality of the instruction datasets.
However, further refinements would involve incorporating human evaluation
and aiming for more refined data collection methods to improve model
performance and reliability.

5.2.2 Preference Data
Answering RQ2, the inclusion of DPO datasets showed enhanced performance
in some tasks, such as answering questions with four given options, as well
as an increased capability of identifying harmful text in input sequences.
This indicates the potential for integrating preference datasets in the pipeline,
however, further analysis is needed to ensure comprehensive human alignment
and mitigation of toxic outputs.

The Swedish preference data was gathered solely by translating another

Discussion | 59

DPO dataset (Orca-DPO-Pairs), and no other means of gathering data were
explored in terms of preference data. Another alternative to this would be
synthetic data generation by letting another model rank model outputs. This
was not explored extensively due to the primary focus on instruction data.

Despite these limitations, the extent to which DPO was explored in this
study highlights a potential alternative to RLHF for Swedish LLMs. Even
with limited resources such as a small preference dataset, and fine-tuning with
QLoRA, we managed to see a trend of increased performance, albeit in a few
key areas. This performance improvement was unexpected, given that DPO
fine-tuning was performed using QLoRA on a model already fine-tuned with
QLoRA.

60 | Discussion

Conclusions and Future work | 61

Chapter 6

Conclusions and Future work

6.1 Conclusions
This thesis set out to answer RQ1: What control measures are required to
ensure a reliable Swedish instruction dataset of high quality? by designing a
pipeline for creating and curating instruction data in Swedish and evaluating
the performance of datasets created from it by fine-tuning LLMs. Further,
RQ2: To what extent can preference datasets, such as DPO datasets, be
included as part of the pipeline? was formulated to explore the potential of
generalizing the pipeline further with preference datasets.

The findings of this study indicate several key insights into the
development and evaluation of Swedish instruction datasets. The quality of
translated datasets plays a big role if cultural and linguistic nuances are to
be preserved, and biases avoided. Ideally, such datasets should likely be
abandoned and focus should be put on tailoring such datasets from anew.
Unfortunately, this is likely unpractical without extensive efforts from several
instances. Therefore, a translation model that can capture these nuances and
source language biases could present a viable alternative. The translation
model used in this study has shown potential in this sense, however it lacks
thorough evaluation.

The models that have emerged through experimentation demonstrated
varying degrees of success across the different evaluations performed. The
most notable performance improvements overall were observed in the last
iterations with both instruction tuning and DPO alignment, indicating a
successful iterative refinement process. Even so, there is a need for better
evaluations and benchmarks as existing strategies may lack sufficient validity.

As indicated by Rafailov et al. [17], the use of Direct Preference

62 | Conclusions and Future work

Optimization (DPO) shows potential as a resource-efficient alternative to
Reinforcement Learning from Human Feedback (RLHF). The DPO-tuned
models in this study specifically demonstrated enhanced performance in
identifying harmful text and in answering knowledge questions given four
alternatives.

Furthermore, the automatic cleaning and curation process, while effective,
highlights the need for incorporating human evaluation to capture nuanced
linguistic and contextual accuracy that automated methods might miss.

In conclusion, this thesis has demonstrated the potential of a robust
pipeline for creating high-quality Swedish instruction datasets and integrating
preference datasets to improve LLM performance. While there are areas
for improvement, we believe that the methodologies and findings provide
a foundation for future work in developing and refining Swedish language
models.

6.2 Limitations
It is befitting to shed light on the hardware limitations posed in this study.
While a thorough attempt was made to utilize the resources given to its extent,
it may have caused a bottleneck in increasing the quality of the models.
Techniques like QLoRA have shown to pose a small trade-off in model
performance compared to full fine-tuning, but the trade-off is nonetheless
existent. This might become problematic when focusing on adjusting the finer
details of language models, and it is very apparent that PEFT techniques should
be abandoned if any talk is to be made about state-of-the-art models. The
attempt to utilize the given resources to its fullest comes with the setback of
fine-tuning taking several days, so the time limitation also becomes relevant,
and time can be the biggest weakness in this field. Despite this, it is noteworthy
that a large part of the results were better than, or as good as, the fully fine-
tuned and pre-trained baselines. It is therefore imaginable that the discrepancy
in these comparisons could be greater if full fine-tunes were to be performed
- which is worth discovering in future work.

Another noteworthy limitation, and general drawback of this study, is the lack
of human evaluation. While automatic evaluation is efficient and valuable, it
presumably lacks in providing nuanced and subjective analysis of the model
outputs the same way that a human would. For example, language experts
could offer insights into contextual relevance, tone, and subtle language
nuances that automated metrics might miss.

Conclusions and Future work | 63

6.3 Ethics
LLMs have the potential to generate textual content of a discriminatory,
biased, or untruthful nature. The methods employed in data cleaning and
annotation in this thesis have been effective in mitigating such content in the
source data. Even so, pre-trained language models have already been exposed
to an immense amount of data where such content is difficult to evade. The
focus is instead put on employing safety measures and human alignment to
make these models as safe as possible. While this thesis has explored DPO
as an alternative to the RLHF pipeline, it must be emphasized that all of the
models are fully capable of generating untruthful, hurtful, and discriminatory
output. Further, the majority of the data used have been gathered from publicly
available and open-source origins. However, it is important to note that the
original methods and standards used in collecting and curating these open-
source datasets are beyond the scope of this thesis and cannot be fully verified.

6.4 Sustainability
When it comes to sustainability, this issue is discussed from three perspectives;
namely economic, social, and environmental. The process of training
LLMs requires significant computational resources. These issues have been
addressed when utilizing parameter-efficient techniques such as QLoRA,
which helps reduce the computational load and makes it more energy efficient.
Further, this thesis emphasizes the creation of instruction datasets in the
Swedish language. This is done partly in an attempt to address social
sustainability in terms of linguistic and cultural preservation. By doing
so, it also opens up the potential to tackle further issues in these areas,
such as the preservation of regional dialects; some of which are at risk of
extinction due to a declining number of speakers and which possess unique
nuances in vocabulary, grammar, and expression. Lastly, the development of
Swedish-specific AI models can benefit businesses or government agencies
with solutions tailored to the Swedish language and culture. This can lead to
more efficient operations, such as processing government documents. Such
initiatives are already set in motion and aim to benefit Swedish society and
Sweden’s competitiveness within the field.

64 | Conclusions and Future work

6.5 Future work
Beyond addressing the limitations discussed in section 6.2, there are several
key areas for future work that could enhance the quality and reliability of
Swedish instruction datasets and language models.

While technical aspects are crucial, there is a point where the quality of
instruction data goes beyond technical considerations and delves into linguistic
and cultural aspects. This transition calls for a more extensive effort involving
experts from various fields, such as Swedish language experts.

Furthermore, exploring more diverse methods for gathering Swedish data
is essential. This could include leveraging crowd-sourcing platforms to collect
a broader range of both instruction datasets and preference data and would
potentially result in a more diverse and culturally representative dataset.

Lastly, comprehensive benchmarking is another crucial area of improve-
ment. This involves both verifying existing evaluation benchmarks like
ScandEval, but also developing new benchmarks that are tailored specifically
for the Swedish language.

References | 65

References

[1] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-
Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. Ziegler,
J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin,
S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford,
I. Sutskever, and D. Amodei, “Language models are few-shot learners,”
in Advances in Neural Information Processing Systems, H. Larochelle,
M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, Eds., vol. 33.
Curran Associates, Inc., 2020, pp. 1877–1901. [Online]. Available:
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfc
b4967418bfb8ac142f64a-Paper.pdf [Pages xi, 1, and 12.]

[2] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. L. Wainwright, P. Mishkin,
C. Zhang, S. Agarwal, K. Slama, A. Ray, J. Schulman, J. Hilton,
F. Kelton, L. Miller, M. Simens, A. Askell, P. Welinder, P. Christiano,
J. Leike, and R. Lowe, “Training language models to follow instructions
with human feedback,” 2022. [Pages xi, 1, 13, and 14.]

[3] J. Wei, M. Bosma, V. Y. Zhao, K. Guu, A. W. Yu, B. Lester, N. Du, A. M.
Dai, and Q. V. Le, “Finetuned language models are zero-shot learners,”
2022. [Pages 2, 13, and 56.]

[4] V. D. Lai, N. T. Ngo, A. P. B. Veyseh, H. Man, F. Dernoncourt, T. Bui,
and T. H. Nguyen, “Chatgpt beyond english: Towards a comprehensive
evaluation of large language models in multilingual learning,” ArXiv, vol.
abs/2304.05613, 2023. doi: 10.48550/arXiv.2304.05613 [Page 2.]

[5] Y. Deng, W. Zhang, S. J. Pan, and L. Bing, “Multilingual jailbreak
challenges in large language models,” ArXiv, vol. abs/2310.06474, 2023.
doi: 10.48550/arXiv.2310.06474 [Page 2.]

https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

66 | References

[6] A. Ekgren, A. C. Gyllensten, F. Stollenwerk, J. Öhman, T. Isbister,
E. Gogoulou, F. Carlsson, A. Heiman, J. Casademont, and M. Sahlgren,
“Gpt-sw3: An autoregressive language model for the nordic languages,”
arXiv preprint arXiv:2305.12987, 2023. [Pages 2, 12, and 32.]

[7] J. Öhman, S. Verlinden, A. Ekgren, A. C. Gyllensten, T. Isbister,
E. Gogoulou, F. Carlsson, and M. Sahlgren, “The nordic pile: A 1.2tb
nordic dataset for language modeling,” 2023. [Pages 2 and 12.]

[8] IBM. (2024) What is NLP? [Online]. Available: https://www.ibm.com/
topics/natural-language-processing [Page 6.]

[9] H. Naveed, A. U. Khan, S. Qiu, M. Saqib, S. Anwar, M. Usman,
N. Akhtar, N. Barnes, and A. Mian, “A comprehensive overview of large
language models,” 2024. [Page 7.]

[10] Y. Goldberg, “A primer on neural network models for natural language
processing,” 2015. [Pages 7 and 8.]

[11] J. J. Webster and C. Kit, “Tokenization as the initial phase in NLP,”
in COLING 1992 Volume 4: The 14th International Conference
on Computational Linguistics, 1992. [Online]. Available: https:
//aclanthology.org/C92-4173 [Page 9.]

[12] T. Kudo, “Subword regularization: Improving neural network translation
models with multiple subword candidates,” in Proceedings of the 56th
Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), I. Gurevych and Y. Miyao, Eds. Melbourne,
Australia: Association for Computational Linguistics, Jul. 2018.
doi: 10.18653/v1/P18-1007 pp. 66–75. [Online]. Available: https:
//aclanthology.org/P18-1007 [Page 9.]

[13] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” 2016. [Pages 9 and 10.]

[14] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” 2023. [Pages xi,
9, 10, and 11.]

[15] A. Radford and K. Narasimhan, “Improving language understanding by
generative pre-training,” 2018. [Online]. Available: https://api.semantic
scholar.org/CorpusID:49313245 [Page 11.]

https://www.ibm.com/topics/natural-language-processing
https://www.ibm.com/topics/natural-language-processing
https://aclanthology.org/C92-4173
https://aclanthology.org/C92-4173
https://aclanthology.org/P18-1007
https://aclanthology.org/P18-1007
https://api.semanticscholar.org/CorpusID:49313245
https://api.semanticscholar.org/CorpusID:49313245

References | 67

[16] F. Stollenwerk, “Training and evaluation of a multilingual tokenizer for
gpt-sw3,” 2023. [Page 13.]

[17] R. Rafailov, A. Sharma, E. Mitchell, S. Ermon, C. D. Manning, and
C. Finn, “Direct preference optimization: Your language model is
secretly a reward model,” 2023. [Pages xii, 15, 16, 41, and 61.]

[18] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and
W. Chen, “Lora: Low-rank adaptation of large language models,” 2021.
[Pages xii and 17.]

[19] T. Dettmers, A. Pagnoni, A. Holtzman, and L. Zettlemoyer, “Qlora:
Efficient finetuning of quantized llms,” 2023. [Page 18.]

[20] Z. Guo, R. Jin, C. Liu, Y. Huang, D. Shi, Supryadi, L. Yu, Y. Liu,
J. Li, B. Xiong, and D. Xiong, “Evaluating large language models: A
comprehensive survey,” 2023. [Pages xii, 18, and 19.]

[21] Hugging Face, “Open llm leaderboard,” 2023, accessed: 2024-06-14.
[Online]. Available: https://huggingface.co/spaces/HuggingFaceH4/op
en_llm_leaderboard [Page 19.]

[22] D. Nielsen, “ScandEval: A benchmark for Scandinavian natural
language processing,” in Proceedings of the 24th Nordic Conference on
Computational Linguistics (NoDaLiDa), T. Alumäe and M. Fishel, Eds.
Tórshavn, Faroe Islands: University of Tartu Library, May 2023, pp.
185–201. [Online]. Available: https://aclanthology.org/2023.nodalida-1
.20 [Pages 19, 34, and 55.]

[23] N. Alzahrani, H. A. Alyahya, Y. Alnumay, S. Alrashed, S. Alsubaie,
Y. Almushaykeh, F. Mirza, N. Alotaibi, N. Altwairesh, A. Alowisheq,
M. S. Bari, and H. Khan, “When benchmarks are targets: Revealing the
sensitivity of large language model leaderboards,” 2024. [Page 19.]

[24] O. Holmström and E. Doostmohammadi, “Making instruction finetuning
accessible to non-English languages: A case study on Swedish models,”
in Proceedings of the 24th Nordic Conference on Computational
Linguistics (NoDaLiDa), T. Alumäe and M. Fishel, Eds. Tórshavn,
Faroe Islands: University of Tartu Library, May 2023, pp. 634–642.
[Online]. Available: https://aclanthology.org/2023.nodalida-1.62
[Page 21.]

https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
https://aclanthology.org/2023.nodalida-1.20
https://aclanthology.org/2023.nodalida-1.20
https://aclanthology.org/2023.nodalida-1.62

68 | References

[25] M. Conover, M. Hayes, A. Mathur, J. Xie, J. Wan, S. Shah, A. Ghodsi,
P. Wendell, M. Zaharia, and R. Xin. (2023) Free dolly: Introducing
the world’s first truly open instruction-tuned llm. [Online]. Available:
https://www.databricks.com/blog/2023/04/12/dolly-first-open-comme
rcially-viable-instruction-tuned-llm [Page 24.]

[26] AI Sweden, “GPT-SW3-6.7B-v2-translator,” 2024. [Online]. Available:
https://huggingface.co/AI-Sweden-Models/gpt-sw3-6.7b-v2-translator
[Page 25.]

[27] D. Smilkov, “Lilac: Curate Better Data for LLMs,” 2024, GitHub
repository, ht tps: / /gi thub.com/li lacai / l i lac (commit: b7d92b7).
Accessed: 2024-06-26 . [Page 26.]

[28] V. Shepelev, “Spylls: Hunspell ported to Python,” 2024, GitHub
repository, https://github.com/zverok/spylls (commit: 9a0d201).
Accessed: 2024-06-28 . [Page 28.]

[29] C. de Dampierre, “BunkaTopics,” 2024, GitHub repository, https:
//github.com/charlesdedampierre/BunkaTopics (commit: ca11546).
Accessed: 2024-06-28 . [Page 30.]

[30] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style,
high-performance deep learning library,” 2019. [Online]. Available:
https://arxiv.org/abs/1912.01703 [Page 33.]

[31] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi,
P. Cistac, T. Rault, R. Louf, M. Funtowicz, J. Davison, S. Shleifer,
P. von Platen, C. Ma, Y. Jernite, J. Plu, C. Xu, T. L. Scao, S. Gugger,
M. Drame, Q. Lhoest, and A. M. Rush, “Huggingface’s transformers:
State-of-the-art natural language processing,” 2020. [Online]. Available:
https://arxiv.org/abs/1910.03771 [Page 33.]

[32] S. Mangrulkar, S. Gugger, L. Debut, Y. Belkada, S. Paul, and B. Bossan,
“Peft: State-of-the-art parameter-efficient fine-tuning methods,” https:
//github.com/huggingface/peft, 2022. [Page 33.]

[33] AI Sweden, “BiaSWE,” 2024, HuggingFace Dataset. [Online].
Available: https://huggingface.co/datasets/AI-Sweden-Models/Bi
aSWE [Page 36.]

https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://huggingface.co/AI-Sweden-Models/gpt-sw3-6.7b-v2-translator
https://github.com/lilacai/lilac
https://github.com/zverok/spylls
https://github.com/charlesdedampierre/BunkaTopics
https://github.com/charlesdedampierre/BunkaTopics
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/1910.03771
https://github.com/huggingface/peft
https://github.com/huggingface/peft
https://huggingface.co/datasets/AI-Sweden-Models/BiaSWE
https://huggingface.co/datasets/AI-Sweden-Models/BiaSWE

References | 69

[34] W. Lian, G. Wang, B. Goodson, E. Pentland, A. Cook, C. Vong,
and ”Teknium”, “Slimorca: An open dataset of gpt-4 augmented
flan reasoning traces, with verification,” 2023. [Online]. Available:
https://https://huggingface.co/Open-Orca/SlimOrca [Page 72.]

[35] S. Mukherjee, A. Mitra, G. Jawahar, S. Agarwal, H. Palangi, and
A. Awadallah, “Orca: Progressive learning from complex explanation
traces of gpt-4,” 2023. [Page 72.]

[36] G. Li, H. A. A. K. Hammoud, H. Itani, D. Khizbullin, and B. Ghanem,
“Camel: Communicative agents for ”mind” exploration of large scale
language model society,” 2023. [Page 72.]

[37] L. Daniele and Suphavadeeprasit, “Amplify-instruct: Synthetically
generated diverse multi-turn conversations for efficient llm training.”
arXiv preprint arXiv:(coming soon), 2023. [Online]. Available: https:
//huggingface.co/datasets/LDJnr/Capybara [Page 72.]

https://https://huggingface.co/Open-Orca/SlimOrca
https://huggingface.co/datasets/LDJnr/Capybara
https://huggingface.co/datasets/LDJnr/Capybara

70 | References

Appendix A: Supporting materials | 71

Appendix A

Supporting materials

A.1 Synthetic Data Generation

You are to generate instruction-tuning data in Swedish. The
questions and answers should be as elaborate as possible. Not every
question has to be formulated as an actual question with a question
mark, it can also be formulated as a statement or a prompt - be
creative.

Also think about adding some diversity to how the questions are
started, for example questions starting with ”Varför” or ”När”
or ”Jag” or ”Vilken” or ”Hur” or ”Kan” or ”Gör”, or ”Jag har en
fråga”, or ”Jag har ett problem”, or ”Fråga:”, or ”Jag vet inte..”,
or ”Jämför”, or ”Hjälp mig” , or ”Är det”, or ”Är”, or ”Nu”. Point
is; keep it diverse, think about formulating them in a diverse
number of ways so that there are a lot of different formats. Also,
the prompting can be more than just questions, it can be prompts
to list something in a specific order, a pop quiz, or any other task
you can think of.

If you want to add new lines in the questions or the answers, then
add a newline character in the string, but don’t actually create a
new line. However, this does not have to occur in every example, or
even any, but do it where it seems necessary.

The format should be in JSONL format like this:

{”text”:[”<human>”:”question”,”<bot>”:”answer”]}

Let’s start. Generate 20 examples in swedish about pronounciation
of swedish words.

Figure A.1: One example of how prompting was done with ChatGPT-4 to
generate 20 examples regarding pronunciation of Swedish words.

72 | Appendix A: Supporting materials

{”text”:[”<human>”:”Vad är det korrekta uttalet av
’kex’?”,”<bot>”:”Uttal av ’kex’ kan variera regionalt i Sverige. I
de flesta delar av landet uttalas det med ett hårt ’k’-ljud följt av
ett kort ’e’ och ett ’x’ som uttalas som ett ’ks’-ljud, så /kεks/.
Dock, i vissa delar, som i Göteborg, kan det uttalas som /çεks/ med
ett inledande ’sch’-ljud.”]}

Figure A.2: One of 20 examples generated from the prompt given in Figure
A.1.

A.2 Dataset Breakdown
Below lists details about the datasets collected, in the order presented in Table
4.1.

SlimOrca-SV

SlimOrca is a small subset of the OpenOrca dataset [34, 35]. This is a large
dataset with curated instruction data, with the Slim version incorporating
additional curation methods. This dataset contains system prompts.

CamelAI-SV

CamelAI Domain Datasets is a collection of datasets from CamelAI that
contains instruction data with domain expertise in Physics, Math, Chemistry
& Biology. The data typically consists of logic and problem solving questions
in a chain-of-thought manner [36].

Pure-Dove-SV

The Pure-Dove dataset contains back-and-forth conversations between the
human and assistant [37]. This is in contrast to most other datasets, which
typically only contains one conversation turn per example.

OpenHermes-SV

OpenHermes is a large collection of different instruction datasets, e.g.
CamelAI and SlimOrca amongst others. Although a smaller subset of the
dataset was translated, an attempt was made to keep the distribution of the
datasets the same.

Appendix A: Supporting materials | 73

Orca-DPO-Pairs-SV

This is a dataset with DPO-pairs, derived from the OpenOrca dataset. It also
contains system prompts.

BibblanSvarar

Bibblansvarar was an initiative from the libraries of Malmö, Sweden, that from
the assignment of Kungliga Biblioteket had a service where people could send
in questions and get answers. This Question & Answer service was decided
to be discontinued the spring of 2024. The dataset was curated and cleaned to
fit an instruction format.

HP-ORD

This is a dataset that contains words from the ORD part of the Swedish SAT:s.
Given a word x and its meaning y, the examples were formatted as a question
”What does x mean”, along with the answer ”x means y”.

BibblanSvarar-Synthetic

This is a synthetically generated dataset based on the questions that exist in the
BibblanSvarar dataset. It was generated using the Llama-8B-Instruct model.

swedish-instruct-data-chatgpt4

This small synthetic instruction dataset contains question-answer pairs in
Swedish that highlight a wide range of topics related to Sweden. It was
generated using ChatGPT-4.

BezzerWizzer

Bezzerwizzer is a Swedish question/answer board game. This dataset was
generated by giving a small part of the questions to ChatGPT-4, and manually
fact checking the answers generated.

74 | Appendix A: Supporting materials

TRITA – EECS-EX2024:0000
Stockholm, Sweden 2024

www.kth.se

€€€€ For DIVA €€€€
{
”Author1”: { ”Last name”: ”Olsén”,
”First name”: ”Tim”,
”Local User Id”: ”u100001”,
”E-mail”: ”timolsenkth.se”,
”organisation”: {”L1”: ”School of Electrical Engineering and Computer Science”,
}
},
”Cycle”: ”2”,
”Course code”: ”DA231X”,
”Credits”: ”30.0”,
”Degree1”: {”Educational program”: ”Degree Programme in Computer Science and Engineering”
,”programcode”: ”CDATE”
,”Degree”: ”Degree of Master of Science in Engineering”
,”subjectArea”: ”Computer Science and Engineering”
},
”Title”: {
”Main title”: ”Designing a Pipeline for Creating and Evaluating Swedish Instruction Datasets for Large Language Models”,
”Language”: ”eng” },
”Alternative title”: {
”Main title”: ”Formulering av en pipeline för att skapa och utvärdera svensk instruktionsdata för stora språkmodeller”,
”Language”: ”swe”
},
”Supervisor1”: { ”Last name”: ”Engwall”,
”First name”: ”Olov”,
”Local User Id”: ”u100003”,
”E-mail”: ”engwall@kth.se”,
”organisation”: {”L1”: ”School of Electrical Engineering and Computer Science”,
”L2”: ”Computer Science” }
},
”Supervisor2”: { ”Last name”: ”Ekgren”,
”First name”: ”Ariel”,
”E-mail”: ”ariel.ekgren@ai.se”,
”Other organisation”: ”AI Sweden”
},
”Examiner1”: { ”Last name”: ”Gustafsson”,
”First name”: ”Joakim”,
”Local User Id”: ”u1d13i2c”,
”E-mail”: ”jkgu@kth.se”,
”organisation”: {”L1”: ””,
”L2”: ”Division of Speech, Music and Hearing” }
},
”Cooperation”: { ”Partner_name”: ”AI Sweden”},
"National Subject Categories": "10201, 10206",
”Other information”: {”Year”: ”2024”, ”Number of pages”: ”1,75”},
”Copyrightleft”: ”copyright”,
”Series”: { ”Title of series”: ”TRITA – EECS-EX” , ”No. in series”: ”2024:0000” },
”Opponents”: { ”Name”: ”A. B. Normal & A. X. E. Normalè”},
”Presentation”: { ”Date”: ”2022-03-15 13:00”
,”Language”:”eng”
,”Room”: ”via Zoom https://kth-se.zoom.us/j/ddddddddddd”
,”Address”: ”Isafjordsgatan 22 (Kistagången 16)”
,”City”: ”Stockholm” },
”Number of lang instances”: "2",
”Abstract[eng]”: €€€€

\input{report/abstract-en}

€€€€,
”Keywords[eng]”: €€€€
Swedish Instruction Data, Model Fine-Tuning, Instruction Fine-Tuning, GPT, Large Language Model, Natural Language Processing, Artificial
Intelligence €€€€,
”Abstract[swe]”: €€€€

\input{report/abstract-sv}

€€€€,
”Keywords[swe]”: €€€€
Svensk Instruktionsdata, Modellfinjustering, Instruktionsfinjustering, GPT, Stor Språkmodell, Naturlig Språkbehandling, Artificiell Intelligens
€€€€,
}

acronyms.tex

%%% Local Variables:
%%% mode: latex
%%% TeX-master: t
%%% End:
% The following command is used with glossaries-extra
\setabbreviationstyle[acronym]{long-short}
% The form of the entries in this file is \newacronym{label}{acronym}{phrase}
% or \newacronym[options]{label}{acronym}{phrase}
% see ”User Manual for glossaries.sty” for the details about the options, one example is shown below
% note the specification of the long form plural in the line below
\newacronym[longplural={Debugging Information Entities}]{DIE}{DIE}{Debugging Information Entity}
%
% The following example also uses options
\newacronym[shortplural={OSes}, firstplural={operating systems (OSes)}]{OS}{OS}{operating system}

% example of putting in a trademark on first expansion
\newacronym[first={NVIDIA OpenSHMEM Library (NVSHMEM\texttrademark)}]{NVSHMEM}{NVSHMEM}{NVIDIA OpenSHMEM Library}

\newacronym[shortplural={LLMs}, firstplural={Large Language Models}]{LLM}{LLM}{Large Language Model}

\newacronym[shortplural={LMs}, firstplural={Language Models}]{LM}{LM}{Language Model}

\newacronym[shortplural={GPTs}, firstplural={Generative Pre-Trained Transformers}]{GPT}{GPT}{Generative Pre-Trained Transformer}

\newacronym[]{GPT-3}{GPT-3}{Generative Pre-Trained Transformer 3}
\newacronym[]{RLHF}{RLHF}{Reinforcement Learning from Human Feedback}

\newacronym[]{PEFT}{PEFT}{Parameter-Efficient Fine-Tuning}

\newacronym[]{LoRA}{LoRA}{Low-Rank Adaptation}
\newacronym[]{QLoRA}{QLoRA}{Quantized Low-Rank Adaptation}

\newacronym[]{PPO}{PPO}{Proximal Policy Optimization}
\newacronym[]{DPO}{DPO}{Direct Preference Optimization}

\newacronym[shortplural={ANNs}, firstplural={Artifical Neural Networks}]{ANN}{ANN}{Artificial Neural Network}
\newacronym[shortplural={FNNs}, firstplural={Feed Forward Neural Networks}]{FNN}{FNN}{Feed Forward Neural Network}
\newacronym[shortplural={RNNs}, firstplural={Recurrent Neural Networks}]{RNN}{RNN}{Recurrent Neural Network}

\newacronym[shortplural={NLPs}, firstplural={Natural Language Processing}]{NLP}{NLP}{Natural Language Processing}
\newacronym{NLG}{NLG}{Natural Language Generation}

	Introduction
	Background
	Problem
	Research Questions
	Purpose
	Goals
	Research Methodology
	Delimitations
	Structure of the thesis

	Background
	Large Language Models
	Deep Learning in NLP
	Training a Neural Network
	Model Fine-Tuning

	Tokenization
	Word Embeddings
	Transformer

	Generative Pre-Trained Transformer
	GPT-SW3

	Instruction Tuning
	Direct Preference Optimization
	Chat Template

	Parameter-Efficient Fine-Tuning
	Low-Rank Adaptation
	Quantized Low-Rank Adaptation

	Evaluating & Benchmarking Language Models
	Evaluation Metrics

	Related Work

	Methods
	Pipeline Design
	Data Scope
	Data Collection
	Translating Data
	Synthetic Data
	Original Swedish Data

	Data Curation
	Data Annotation & Cleaning

	Data Visualization
	Clusters
	Bunkatopics

	Fine-tuning Setup
	Pre-trained Model Selection
	Chat Template
	Training Configuration
	Instruction Tuning
	Direct Preference Optimization

	Evaluation
	ScandEval
	BiaSWE
	SweSAT (Högskoleprovet)

	Results and Analysis
	Dataset Summary
	Dataset Combinations for Training

	Experiment Summary
	Instruction Tuning Experiments
	DPO Experiments

	Evaluation
	ScandEval
	BiaSWE
	SweSAT
	Word Comprehension (ORD)
	Reading Comprehension (LÄS)
	Sentence Completion (MEK)

	Discussion
	Benchmark Summary
	Assessing the Pipeline
	Instruction Data
	Preference Data

	Conclusions and Future work
	Conclusions
	Limitations
	Ethics
	Sustainability
	Future work

	References
	Supporting materials
	Synthetic Data Generation
	Dataset Breakdown

